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Abstract: In different areas of mechanics, highly non-equilibrium processes are accompanied by
self-organization of various type turbulent structures and localized inhomogeneities at intermediate
scale between macro and micro levels. In order to describe the self-organization of the new dynamic
structures on the mesoscale, a new problem formulation based on the results of non-equilibrium
statistical mechanics, control theory of adaptive systems, and theory of a special type nonlinear
operator sets is proposed. Determination of the turbulent structure parameters through constraints
imposed on the system in the form of nonlinear functionals is an inverse problem similar to problems
on spectra in quantum mechanics. Like in quantum mechanics, the bounded system in response
to impact forms a discrete spectrum of the turbulent structure sizes and lifetimes which goes into
continuous spectrum close-to-equilibrium. The proposed description of the structure evolution on the
intermediate scale level which is valid far from thermodynamic equilibrium bridges the gap between
macroscopic theories and quantum mechanics and affirms the unity of the physical laws of nature.

Keywords: mesoscale; turbulent structure; wave packet; size spectrum; inverse problem; nonlinear
functional

1. Introduction

One of the unsolved problems of modern physics is the behavior of the system at an intermediate
scale level between the deterministic behavior of a macroscopic system and the probabilistic one
at the micro level of elementary particles. Macroscopic size systems containing a huge number of
elementary particles obey the laws of classical physics; the energy and momentum are distributed
continuously over the system volume. The microscopic structure and processes occurring at the
structural level determine only averaged macroscopic properties of the system. The elementary
particles interact according to the laws of quantum mechanics, according to which energy and
momentum are transmitted by discrete quanta. The question of what is happening at the intermediate,
mesoscopic scale has been raised for a long time, but with the development of nanotechnologies, it has
gained practical interest. Studies of the properties of liquids with dispersed nanoparticles or flows in
nanochannels have shown that the classical models of continuum mechanics have proved unsuitable
for their description [1,2]. It is known that materials with an internal nanoscale structure have new
properties that are different from the usual properties of these materials. Developing nanotechnology
needs a fundamental theory that could be laid in their basis.

Modern studies of high-speed and short-duration processes in condensed matter [3–6] have
shown that processes on very small space-time scales are also not described by models of continuum
mechanics. A correct description of such processes also presents the unsolved fundamental problem of
constructing non-equilibrium thermodynamics.

The recent trends in non-equilibrium thermodynamics propose new statistical and
phenomenological approaches involving nonlinear, nonlocal, and memory effects to describe high-rate
and short-duration processes with large spatial gradients which are used in modern technique and
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technologies. The main ideas behind the macroscopic approaches to describe the processes out of
equilibrium beyond the local equilibrium hypothesis are presented in book [7]. Since non-equilibrium
thermodynamics is not considered to be completely constructed, many researchers still use
long-established and deeply rooted ideas that implicitly rely on the concept of local thermodynamic
equilibrium. Mechanically transferred to the non-equilibrium conditions, these ideas sometimes lead
either to contradictions, or simply to incorrect results.

Experimental results, obtained in the study of non-equilibrium processes in different branches of
mechanics (hydrodynamics of turbulent flows, multi-phase flows, shock-induced processes in solids,
biomechanical processes), show many similar features of the non-classical system response to external
perturbations. Far from equilibrium processes are often accompanied by self-organization of new
dynamic structures [8–16] such as boundary layers, mass velocity pulsations, vortex structures, various
localized inhomogeneities, etc. The observable self-organization effects are characterized not only by
the medium properties (composition, phase state) but also by the loading and boundary conditions and
the system geometry. Because of the finite rate of propagation of disturbances, the medium response
always lags behind the impact from outside. Momentum and energy exchange between new degrees
of freedom related to the internal structure formed under external influence can give rise to oscillations,
instabilities, and formation of feedback between the structure effects and macroscopic properties of
the system. The system behavior becomes unstable and poorly predictable. The medium properties
become time-dependent, exhibit size effects, and depend on boundary and loading conditions. In order
to describe processes far from equilibrium, we need to understand the physical nature of the processes
at the intermediate scales, to generalize and revise all the concepts of thermodynamics and to develop
a unified mathematical description valid for various media in a wide range of loading conditions with
accounting self-organization effects.

An example of such structures is provided in Figure 1. In the research [16], the fracture of
polymethylmethacrylate and fluoroplastic cylinders by an electric explosion of wire was studied.
The use of the electric-physical approach allowed us to destroy plastic samples with a single mechanical
pulse of 1–5 µs duration, depending on the features of the experimental design and material properties.
It was noticed that the observed abundance of various structures on the fracture surface of the
polymethylmethacrylate sample in comparison to a fluoroplastic one corresponds to a more intense
damping of the load pulse due to its absorption by the forming structures on the mesoscale.

In Section 2, the problems arising in the description of shock-induced processes in condensed
matter are presented. Experimental studies of shock-wave processes in condensed media characterized
by such scales [1–6,10,11,15–23] show that so-called mesoparticles become carriers of momentum
and energy which are much larger than the quantum, but much smaller than the macro-size of the
system. At present, even a separate discipline "mesomechanics" has emerged which deals with the
study of mesostructures that arise in various materials under the influence of external loading [24,25].
The theoretical description of the mesostructures formation is associated with the description of a
non-equilibrium elastic-plastic transition under shock loading and requires entering the region of
thermodynamics far from equilibrium, which is currently still being developed [7]. The problem of the
emergence and evolution of mesoscopic-scale structures has many interesting practical applications
in high-speed technique and technologies for creating materials with desired properties, including
nanotechnology, as well as in biomechanics and medicine.

The solution to this problem requires new interdisciplinary approaches based on the rigorous
results of non-equilibrium statistical thermodynamics which would allow one to go beyond continuum
mechanics into the region of substantial non-equilibrium.
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Figure 1. Structures formed on fracture surfaces of polymethylmethacrylate (a) and fluoroplastic (b)
samples being rapidly fractured with electric explosion of wire [16]. Regions of increased roughness (1),
mirror areas (2), and areas of geometric shapes (3) were identified for a polymethylmethacrylate
sample (a).

In our work, we relied on non-equilibrium nonlocal thermodynamic relationships with memory
between thermodynamic forces and fluxes which were derived in statistical mechanics by Zubarev [26]
ab initio using the method of the non-equilibrium statistical operator. The obtained relationships
are nonlocal both in space and time and have no restrictions on the scale of processes. However, the
generalized integral-differential equations obtained by the method for the volumetric densities of
mechanical quantities have not been used in practice for a long time due to the difficulties in describing
the space-time correlations included in the integral kernels of these equations.

In papers [13,14,27–31], a new approach to modeling the dynamics of correlations far from
thermodynamic equilibrium was proposed based on the Bogolyubov’s principle of decaying
correlations [32], the Jaynes’s principle of maximum entropy (MEP) [33], according to which a
non-equilibrium system tends to achieve the maximum value of entropy available under the constraints
imposed on the system, and the speed gradient principle [34] developed in control theory of adaptive
systems which determines the fastest way to achieve this goal. Within the framework of this approach,
a connection between the dynamics of correlations and the sizes of forming mesoparticles was revealed.
Presented in Section 3, the developed approach is applied to describe mesostructure evolution during
shock wave propagation inside the condensed matter.
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An explicit approximate solution [6] to the problem of the waveforms evolution during the wave
propagation is presented in Section 4. Based on the solution, the interference and formation of wave
packets of elastic-plastic waves in media with dispersion is considered in Section 5.

In Section 6, we show that, within the proposed approach, the sizes of mesostucture in multi-scale
processes in bounded systems should be discrete.

In Section 7, an evolution of mesostructure during the wave packet propagation is described
basing on the results obtained in Sections 5 and 6. Mathematical apparatus to the problem formulation
and solution is given in Section 8.

We found that the mathematical formulation of the problem of determining the sizes of evolving
mesoparticles coincides with the formulation of inverse problems of quantum mechanics in the Banach
functional space for nonlinear integral operators [35,36]. In addition, the observed behavior of the
wave packets propagating along the condensed matter corresponds to the spreading quantum wave
packets [37]. This, of course, does not mean that quantum mechanics works in full on the mesoscale.
We wanted to show that in such transient processes which are not entirely described by macroscopic
laws, the quantum discrete nature of the mesolevel is already partially manifested.

2. Mesoscopic Structure Formation in Shock-Induced Processes

One of such problems is related to shock-induced processes. Experimental study of shock loading
of solid materials [3,13,14,17–19] shows that the material response can not be explained by continuum
mechanics. Specifically, the presented results indicate that mechanical and physical properties of the
shocked material are determined by localized deformations occurring on a sub-continuum scale.

For a long time, it was thought that plastic deformation was a macroscopically uniform
continuous process. Now we know that the plastic deformation is heterogeneous at all intermediate
scales and consists of series of discrete steps reducing the local stress during the relaxation [20,21].
However, numerous attempts to describe mechanical characteristics of crystalline solids by using the
failed dislocation theory. Now the situation in the experimental and theoretical study of defective
structures in deformable materials has radically changed. Structural studies of solid materials
have revealed completely new types of defective structures for different deformation conditions.
These formations play the role of independent elementary carriers of momentum and energy. A new
area of mechanics called “mesomechanic” [24,25] describes the deformation and destruction of the
material as the multi-scale process responsible for the macroscopic properties of materials. According
to modern concepts of the physics of strength and plasticity, there is a certain hierarchy of scale
levels that defines a change in mechanisms of momentum and energy transport in a deformable solid,
depending on the strain rate, boundary and initial conditions, and the material properties [5,14,22,23].
Despite considerable progress in modeling, there is no a first-principle approach capable of describing
a whole complex of non-equilibrium processes in a deformable medium responsible for its dynamic
macroscopic properties. To develop predictive continuum models, it is necessary to critically examine
the fundamental postulates used to interpret shock compression phenomena. A theoretical description
of the phenomenon of plasticity under shock loading is associated with serious difficulties connected
to specific problems of non-equilibrium transport. The non-equilibrium processes of mass, momentum
and energy transport in condensed matter are accompanied by dynamic self-organization processes
at intermediate, mesoscopic scales. The observed formation of local inhomogeneities at mesoscopic
scale, such as the localized shear bands, microcracks, traces of microflows and rotational structures
significantly change the macroscopic properties of the medium. In experiments on shock loading of
solid materials [12,22,23], it was found that the formation of dynamic structures inside the propagating
waveform is of resonant origin when the wave length coincides with the size of spatial internal structure
of the medium. It is impossible to detect if they are reversible or not until behind the wave a part of
them remained frozen into the medium. The observed inhomogeneities formed by shock loading are
only traces left in the medium by partially reversible mass velocity pulsations and wave structures.
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The elastic-plastic transition zone itself is highly turbulent with a collection of eddies, interacting
transverse waves, shear layers, and density interfaces [10]. Inside the turbulent transition zone,
large pulsations and a strong departure from local equilibrium occur. When the pulsations grow,
inertial effects begin to play a significant role. In this case, angular momenta appear associated with
internal rotations of the medium—vortex structures. At present, the notion of turbulence differs from
that which was commonly adopted earlier. The turbulent state is not random or chaotic, but an orderly
structure. A fundamental role in the phenomenon of turbulence is played by internal and external
boundaries. It has long been noted that correlations are observed between pulsations at different
spatio-temporal points. The turbulence is inherent in non-equilibrium processes in media of various
nature. However, up to now, there has been no general theory of turbulent flows of fluids, only various
semi-empiric models are used.

Thus, the response of solid materials to shock loading determined by the self-organization effects
at mesoscopic scale and multi-scale energy exchange relate to highly non-equilibium processes which
can not be described in the framework of the continuum mechanics models since all the special features
of turbulence should be included in the description of thermodynamic processes far from equilibrium.
Now, we need such a fundamental theory that would explain the formation of turbulent mesoscopic
structures in various media under non-equilibrium conditions on a unified theoretical basis.

A new interdisciplinary approach to the problem based on results of non-equilibrium statistical
mechanics and control theory of adaptive systems [6,14,27–29] was applied to explain the whole
complex of non-equilibrium phenomena.

3. New Approach to the Multi-Scale Processes far from Equilibrium

Based on the results of non-equilibrium statistical thermodynamics, a new self-consistent approach
was proposed to include self-organization of dynamic structures on the mesoscale into mathematical
modeling processes out of equilibrium. Derived in non-equilibrium statistical thermodynamics [26],
the nonlocal relationships with memory between thermodynamic forces and fluxes served as the
basis for constructing models that describe the dynamics of spatiotemporal correlations depending
on the external impact on the system [6,14,27–29]. In scope of the approach, it was shown that
the self-organization effects at the meso-scale are the result of the correlation dynamics under the
constraints imposed. The generalized nonlocal and retarded hydrodynamic equations are used at
a macroscopic level and on an intermediate between macro and micro scale the dynamics of the
space-time correlations is described by Speed Gradient principle developed in control theory of
adaptive systems [34] and Maximum Entropy principle by Jaynes [33]. Interrelations between the
correlation scales and dynamic structures of the system allow us to describe the internal structure
evolution far from equilibrium. Evolving over time, the constructed model of the correlation
function with parameters connected to the correlation scales allow us to take into account all typical
features of turbulent structures in any medium. An appropriate mathematical apparatus for nonlocal
boundary problems based on the special type nonlinear operator theory [35,36] is developed to
describe non-equilibrium phenomena. Inclusion of the constraints imposed on the system and
boundary and loading conditions into the modeling makes it possible to describe self-organization of
new multi-scale dynamic structures in an open system and to find the scales of the correlations
which are not given in advance. In the framework of the developed approach, under highly
non-equilibrium conditions, correlations decay at scales that are intermediate between the micro
and macro levels where the transfer mechanism combines both wave and diffusion properties.
The most common mechanism of momentum transfer is a nonlinear damped wave. The problem
of the propagation of a planar elastic-plastic wave is solved in papers [6,27] by using the developed
model of dynamics of spatiotemporal correlations. The initial state of a solid is characterized by
long-range spatiotemporal correlations; a shock breaks the correlations and induces elastic-plastic
wave propagation. The constructed model of momentum transport describes the stress relaxation as
a post-shock due to the memory effects included in the correlation function. This conception of the
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shock-induced elastic-plastic transition based on the non-local theory of non-equilibrium transport
processes [27] radically differs from the conventional one. Comparison of the obtained results to the
experimental data was shown that all experimentally observed features of the waveforms propagation
are described by the model.

4. Integral Model of the Elastic-Plastic Wave Propagation in Condensed Matter

A problem on the shock-induced elastic-plastic wave propagating in condensed matter has been
solved by Meshcheryakov and Khantuleva [6]. We give the obtained solution, since it will be used in
the future. In case of the planar shock loading when the induced wave propagates along the x-axis in
a linear approximation with respect to the parameter v/C � 1, the equations of mass and momentum
transfer lead to the equation for mass velocity v

∂2v
∂t2 − C

∂2v
∂x2 =

∂2

∂t∂x
1
ρ0

(
C2ρ1 − J1

)
. (1)

The constitutive equation for the longitudinal component of stress tensor to close the Equation (1)
based on the generalized thermodynamic relationships [26] takes a form

J1(x, t) = ρ1C2
0 −

4
3

GtrG

ω(t)∫
0

dt′

trG
MG(t, t′; trG)

∂v
∂x

; ω(t) =

{
t, t < tR

tR, t ≥ tR
. (2)

Here, ρ0is initial unperturbed density, C is longitudinal sound velocity defined by the relationship
ρ0C2 = K + 4G/3, where K, G are volume compression and shear elastic modules. MG(t, t′; trG) is the
temporal correlation function for the shear degrees of freedom.

The force is applied only during the time interval [0, tR], whereas the shear relaxation time is much
more trG � tR for condensed matter. For macroscopic large-size systems when L� lr0, the nonlocal
effects in the transition zone can be omitted. For shock-induced processes of moderate intensity,
the plastic deformation in the transition zone is explained by the shear relaxation. In a condensed
medium, the shear relaxation time is less than the bulk one trG � tr0. When the elastic limit is
exceeded, there is a two-wave structure form, which consists of both an elastic precursor and a plastic
front rising behind it. The mass transporting plastic part of the waveform gradually lags from the
precursor. Its speed is a group velocity of the wave propagating in a medium with internal structure,
evidenced by the experimentally observed in real time the mass velocity dispersion.

In the reference connected to the elastic precursor running at the constant longitudinal sound
velocity C, ζ = (t − x/C)/tR, ξ = x/L, an essential simplification of the nonlocal model for the
impulse transport (1), is gained on the condition τ∂/∂ζ � ε∂/∂ξ resulted from the experimentally
tested evaluation ε/τ = CtR/L � 1. Here, parameters of relaxation, retardation, and nonlocality
are introduced: τ = tr/tR, Θ = tm/tR, ε = Ctr/L. The separation of typical scales of the process is
considered as the necessary condition for self-organization of new structures in the medium [8,9].

On the above conditions, the problem (1)–(2) in the new reference with J1/ρ0CV0 = v(ζ; τ) is
reduced to an integral equation for the mass velocity

v(ζ; τ) =

ω(ζ)∫
0

dζ ′Mζ(ζ, ζ ′; τ)
∂v
∂ζ ′

; ω(ζ) =

{
ζ, ζ < 1

1, ζ ≥ 1
. (3)

In papers [14,27,29], the temporal correlation function was introduced to take into account inertial
and relaxation post-effects:

Mζ(ζ, ζ ′; τ) = exp
{
−π(ζ − ζ ′ −Θ)2

τ2

}
. (4)
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Meeting the above conditions, the correlation function describes a range of the wave modes near
the elastic limit

exp
{
−π(ζ − ζ ′ −Θ)2

τ2

}
−−−→
τ→∞

1. (5)

The integral Equation (3) with the correlation function (2) has an explicit solution at a constant
strain-rate ∂v/∂ζ = 1 that describes the waveform propagation along the medium.

v(ζ; τ, Θ) =
τ

2

(
erf
√

π(ζ −Θ)

τ
+ erf

√
πΘ
τ

)
, ζ ≤ 1. (6)

At the initial stage when t� tr, the system response to the loading is elastic

J(ζ; τ, Θ) −−−−−−−−−→
ζ/τ→0, Θ/τ→0

ρ0Cv = ρ0C2e. (7)

At the final stage when the stress component corresponds to the Newtonian fluid,

J(ζ; τ, Θ) −−−−−−−−−−→
ζ/τ→∞, Θ/τ→∞

−ρ0C2τ
∂v
∂x

= −
(

λ +
4
3

µ

)
∂v
∂x

. (8)

After the loading t > tR, the solution describes the shear relaxation as a memory effect due to the
medium inertia:

v(ζ; τ, Θ) =
τ

2

(
erf
√

π(ζ −Θ)

τ
+ erf

√
π(1− ζ + Θ)

τ

)
, ζ > 1. (9)

In the limit of the non-decaying memory, the stress remains constant

J(ζ; τ, Θ) −−−−−−−−−→
ζ/τ→0, Θ/τ→0

ρ0CV0. (10)

Without the memory effects after the loading, the stress disappears

J(ζ; τ, Θ) −−−−→
ζ/τ→∞

0. (11)

As experimental data show, the parameters τ(ξ), Θ(ξ) grow with the distance traveled by the
wave and the waveform spreads.

5. Interference of Elastic-Plastic Waves

In a heterogeneous medium, an external action induces a group of waves with different but
fairly close frequencies which are recorded in experiments in real time as the mass velocity dispersion.
As a result of interference, the waves form a space-time limited wave formation called a wave packet.
Due to the dispersion properties of the medium, wave packets propagate at a group velocity which
is always less than the phase velocity. In an inertial medium with sufficiently long relaxation and
delay times, the wave fronts induced by short-duration pulses can be added up, greatly increasing the
velocity and resulting stress [30]. Due to such resonance effects, the resulting wave packet can transfer
mass and momentum in an amount significantly exceeding the capabilities of one total pulse at the
same strain rate.

In the presence of dispersion in the individual components of the waves, a spread in phase
velocities appears which in turn leads to the spreading of the wave packet during its propagation, as in
quantum mechanics. Experiments on the shock loading of solid materials show that the plastic front of
an elastic-plastic wave actually spreads during propagation [6]. Packets partially reflect from internal
and external boundaries and partially penetrate the inter-phase boundaries. For bounded systems,
interference of incident and reflected waves can give rise to the resonance effects which form waves
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with large amplitudes. Propagating at different speeds, the mass flows inside plastic fronts generate
high-speed shifts which in turn induce rotational degrees of freedom [38]. The self-organization of
vortex-wave structures associated with the phenomenon of turbulence is experimentally observed in
solids under shock loading.

All type inhomogeneities including turbulent structures (pulsations, mesoflows, mesoshears,
rotations) arise inside the waveform and absorb a part of kinetic energy not due to dissipation
(diffusion is too slow for a shock duration) but to dispersion [30,39]. The turbulent structures are
only partially irreversible and only a part of the dynamic structures remain frozen into material after
passing the wave.

In quantum mechanics, the problem of scattering of a wave packet by potential inhomogeneities is
solved [37]. The scattering process on the potential can be considered as the interference of the incident
wave and multiply reflected waves from the inhomogeneities of the potential. The interference can
give rise to various resonant effects depending on the ratio of wavelengths and distances between
potential inhomogeneities.

It was found that, during scattering, the transmitted and reflected wave packets exit with a certain
delay. The times and lengths of the delay are determined by the packet pulses and the shape of the
potential. The delay of the reflected packet corresponds to the penetration depth of the wave into the
potential barrier. In addition, due to the dispersion, wave packets spread out on the inhomogeneities
of the potential.

The difference between the oscillations of a discrete chain of atoms and the vibrations of a
continuous string is the manifestation of the effects of the internal structure of the system in the form
of wave dispersion, which manifests itself in a nonlinear relationship between frequency and wave
vector in the dispersion relation. Group velocity occurs only in dispersive media, when the internal
structure of the medium affects the process of wave propagation. Group velocity is always less than
phase velocity, like wave packet velocity. It can be seen from this that short-wave signals propagate
more slowly than long-wave ones. Due to the spreading of the wave packet, they also decay faster
than long-wave ones. In the long-wavelength limit, when the dispersion disappears, both speeds
coincide and become equal to the speed of sound propagation in the equilibrium system. In the
long wavelength limit λ� 2a, when the size of the lattice does not affect the propagation of waves,
the medium can be considered as structureless.

In addition, a real material always has various defects of the crystal lattice and other
inhomogeneities at the mesoscopic scale level. Obviously, larger structures result in greater dispersion.
Since the interaction between the atoms is potential, all the heterogeneities of the material structure
are potential heterogeneities. A shock on a solid can be considered as the scattering of a wave packet
by the inhomogeneities of its structure after passing through a potential barrier. The parameters of
relaxation and delay introduced into the description of an elastic-plastic wave in Section 4 are related
to the delays of the wave packet that arose after passing through the potential barrier during the shock.

In experimental study of shock loading of solid materials [11,12], the mass velocity dispersion〈
v2 − 〈v〉2

〉
= D2(ζ) was recorded inside the waveform on the back side of the metal target. It means

that the plastic part of the registered waveform consists of separate mesoscopic mass flows. Due to their
velocity dispersion, the plastic waveform presents a wave packet spreading during its propagation.
Then, integration over the interval of the mass velocity variation D(ζ) defines the wave packet
transmitted into material after the shock

v(ζ) =
1

2D(ζ)

ζ+D(ζ)∫
ζ−D(ζ)

dζ

ω∫
0

dζ ′ exp
{
−π(ζ − ζ ′ −Θ)2

τ2

}
∂v
∂ζ ′

. (12)

In experiments on the shock loading of solid materials, the wave characteristics are registered at
two scales simultaneously. The waveform is recording at a mesoscopic spot compared to the diameter
of the laser beam on the target back side. The mass velocity dispersion is registered only on the plastic
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front [6]. It means that the wave packet consists of movements at the smaller scale than the mesoscale
of the registered waveform. Apparently, there is a hierarchy of scales between macro and micro levels
on which momentum and energy exchange proceeds into the medium after the shock loading.

6. Discrete Spectra of Meso-Scale Structure in the Shocked Material

The mass velocity waveform v(ζL) and the velocity dispersion D(ζL) are registered in real time
on the back side of metal target at x = L, ζL = (t− L/C)/tR. However, the relaxation and delay
parameters τL, ΘL are unknown for the wave packet. In order to define them, it is necessary to find
the total momentum loss during the passage along the target. Since the initial waveform is given, it is
sufficient to define the total momentum in the final waveform by integration over its duration

p∫
0

dζv(ζ)

∣∣∣∣∣∣
L

=

p∫
0

dζ
1

2D(ζ)

ζ+D(ζ)∫
ζ−D(ζ)

dζ

ω∫
0

dζ ′ exp
{
−π(ζ − ζ ′ −Θ)2

τ2

}
∂v
∂ζ ′

∣∣∣∣∣∣∣
L

. (13)

We have got a nonlinear Equation (13) with respect to the parameters τL, ΘL. Experimental
data [6] show that, during quasi-stationary wave propagation, between the parameters τL, ΘL a linear
relationship is established for each material Θ = kτ. In this case, the nonlinear Equation (13) defines
the parameters at x = L in a non-unique way.

Physical meaning of the parameters is associated with the structure elements lifetimes.
The parameter τ defines the size of each type turbulent structure τtRC = lr and the parameter
Θ defines inertial properties of the turbulent structure of each size in the obtained spectrum.

The finite-size element, embraced by correlations of the radius lr 6= 0, moves like solid particles
in multi-phase medium; it can pulsate and in a non-uniform mass velocity field begins to rotate.
Such turbulent modes of motions at intermediate scales are observed not only in high-rate flows of
fluids but also in solid materials under shock loading [10,11]. Thus, the finite-size elements embraced
by the correlations and moving as a quasi-particle can be considered as a real dynamic structure of
the system.

Like in quantum mechanics, the bounded system out of equilibrium can have a discrete spectrum
of the structure sizes and near equilibrium, where classical hydrodynamic equations are valid, it goes
into continuous spectrum. Elements of the discrete dynamic structure of the system become carriers of
momentum and energy in the system. Since finite values of the model parameters can represent linear
sizes of the system dynamic structure, Equation (16) determines dynamic self-organization of various
kinds of turbulent structures in the system. It means that the structuring is a response of the system
to the external action that takes the system far from thermodynamic equilibrium. Then, it may be
concluded that the self-organization appears to be the necessary component of the transport processes
modeling far from equilibrium.

The task of determining the parameters of the structure of the system from its integral
characteristics is an inverse problem of quantum mechanics. In quantum mechanics, it is proved that a
sufficiently deep potential well should contain discrete energy levels. We can consider that here we
have just the same case: a short-duration process in a bounded system should be characterized by the
discrete spectrum of temporal parameters associated with mass flows on the mesoscale. Long-duration
loading induces continuum spectrum of internal structure. The spreading of the wave packet also
leads to continuum spectrum of parameters.

7. Evolution of the Turbulent Structure Lifetimes

In the general case, Equation (13) is not sufficient to define all the parameters at various distances
from the shocked surface. When the number of boundary conditions is less than the number of the
model parameters, another part evolves in the direction of thermodynamic equilibrium. Generally,
the system states far from equilibrium are unstable. It means that spatiotemporal correlations according
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to the hypothesis by Bogolyubov [32] attenuate due to the degrees of freedom that are not governed by
the constraints imposed.

In order to define all the turbulent structure parameters within a wide range of conditions, it is
necessary to describe the waveform evolution during its propagation along the medium. The limiting
state, the goal of the evolution, is determined by the thermodynamic Maximum Entropy principle
by Jaynes [33]. The fastest way to the goal is governed by the Speed Gradient principle by Fradkov
developed in the control theory of adaptive systems [34]. By using the Speed-Gradient principle,
it became possible to trace the entropy production behavior far from equilibrium. In Ref. [31],
it had been shown that, by saving the information about the process history and transforming its
internal structure, the system minimizes its irreversible losses. Between the structure evolution on the
mesoscale and macroscopic properties of the system, feedback is forming. Stabilization of the states
in approaching equilibrium requires the energy dissipation in the form of heat. Stabilization of the
non-equilibrium states requires the energy loss to the structure transitions.

The goal is written as a conditional functional

Q(t, Θ) = S(τ, Θ)+

+ λ

 p∫
0

dζv(ζ)

∣∣∣∣∣∣
L

−
p∫

0

dζ
1

2D(ζ)

ζ+D(ζ)∫
ζ−D(ζ)

dζ

ω∫
0

dζ ′ exp
{
−π(ζ − ζ ′ −Θ)2

τ2

}
∂v
∂ζ ′

∣∣∣∣∣∣∣
L

 .
(14)

λ is the Lagrange multiplier. The entropy production inside the waveform for the way along the
x-axis [0, L], ξ = x/L is written as follows:

S(τ, Θ) =

x∫
0

dx

p∫
0

dζ
∂v
∂ζ

J1(ζ; τ)/ρ0CV0 =

=

x∫
0

dx

p∫
0

dζ
1

2D(ζ)

ζ+D(ζ)∫
ζ−D(ζ)

dζ

ω∫
0

dζ ′ exp
{
−π(ζ − ζ ′ −Θ)2

τ2

}
∂v
∂ζ ′

.

(15)

The finite form of the Speed Gradient algorithm defines the evolutionary set of differential
equations with respect to the parameters τ(ξ), Θ(ξ):

dτ

dξ
= −gτ

d(dQ/dξ)

d(dτ/dξ)
,

dΘ
dξ

= −gΘ
d(dQ/dξ)

d(dΘ/dξ)
. (16)

The gain parameters gτ , gΘ are empiric constants connected to the inertial properties of the
turbulent structures.

The nonlinear set of differential Equation (16) defines a family of integral curves that describe the
evolution paths of the turbulent structures. In order to choose the real paths from them, we need the
conditions for each pair of parameters τ(ξ = ξ0) = τ0, Θ(ξ = ξ0) = Θ0. The conditions and the gain
parameters we can get only from experimental measuring of the new internal structure sizes inside
the target material of two close waveforms. Then, we have the completed mathematical formulation
of the inverse problem of determining the spectrum of turbulent structures from experimental data.
For quasi-stationary wave propagation, the proposed approach results in the evolution paths coinciding
with experimental data [40].

8. Mathematical Apparatus to Solve the Problem

A mathematical apparatus similar to the apparatus of quantum mechanics for solving inverse
problems was developed in papers [35,36]. We modify it to the case of evolving parameters and apply
it to solve the problem in the formulation (16). Integrating the Equation (16) over the way traveled by
the wave gives two functional equations for the evolving parameters τ, Θ:
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τ(ξ) = τ(ξ0)− gτ

ξ∫
ξ1

dξ
d(dQ(τ, Θ)/dξ)

d(dτ/dξ)
, Θ(ξ) = Θ(ξ0)− gΘ

ξ∫
ξ1

dξ
d(dQ(τ, Θ)/dξ)

d(dΘ/dξ)
. (17)

The goal functional in (17) depends on the evolution coordinate only via the parameters τ(ξ), Θ(ξ)

dQ(τ, ξ)

dξ
=

dQ(τ, ξ)

dτ

dτ

dξ
+

dQ(τ, ξ)

dΘ
dΘ
dξ

. (18)

Taking into account (18), Equation (17) can be rewritten in a form

τ(ξ) = τ(ξ0)− gτ

ξ∫
ξ1

dξ
dQ(τ, Θ)

dτ
, Θ(ξ) = Θ(ξ0)− gΘ

ξ∫
ξ1

dξ
dQ(τ, Θ)

dΘ
. (19)

According to Equation (19), the parameters τ, Θ increase with gradient descent over the surface
Q(τ, Θ) from the point τ(ξ0), Θ(ξ0) and decrease when lifting. In both cases, the wave produces
the maximum integral entropy for the propagation way possible under the condition (13) imposed.
The case of the quasi-stationary wave propagation with the growing parameters corresponds to the
spatiotemporal correlations in solid material. In this case, the limiting state is solid with a new internal
structure formed after the shock-induced stress relaxation. Another limiting state after extreme shock
is fluid. Presented in Section 4, the solution is not correct in this case.

Within the iteration procedure developed in [35,36], the set (17) in the i-approximation takes
a form

τi = Fτ (Θi−1, τi−1) , Θi = FΘ (Θi−1, τi−1) (20)

Here, τ, Θ ∈ E, Fτ, Θ : E → E, Fτ, Θ is nonlinear operators, E is an infinite-dimensional
Banach space.

If the initial approximation for the parameters at the distance ξ0 is given from experiments,
the next approximation corresponds to the parameters at the distance ξ1 > ξ0 down the surface
along the path resulted from the Speed Gradient algorithm or at the distance ξ−1 < ξ0 up the surface.
The procedure (20) represents a sweep along the wave propagation path. Each iteration defines a step
of the system evolution on the mesoscale.

The integral transport Equation (12) allows us to express the mass velocity vi in i-approximation
as a nonlinear functional depending on the model parameters τ, Θ:

vi = Φ [vi−1; Θi, τi] , (21)

Here, Φ is a nonlinear operator, Φ : E× E× E→ E. Equation (21) with the parameters defined
by the set (20) describes the waveform evolution as a wave packet. In Refs. [35,36], it was proved that,
if the iteration procedure converges, a solution to the problem (21) exists.

Equation (12) and its approximate form (21) describe the wave packet spreading during its
propagation. The set (19)–(20) describes the evolution of the discrete internal structure of the packet
during its spreading. Between the two scales, there is feedback.

In general, describing the structure formation and evolution on the mesoscale in the
formulation (19) is very complicated problem. The mathematical apparatus needs further development.
Now, we can not answer some questions regarding the relationship between the step of the iterative
procedure and the scale of temporal correlation, between feedback and the delay time, and between
the inaccuracy of experimental data and the convergence of the procedure. We consider the proposed
sweep of the iteration procedure as one of the possible approaches to future developments.
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9. Conclusions

The emergence of various turbulent structures at the intermediate between macro and micro scale
levels, as shown by experimental data, accompanies non-equilibrium processes of mass, momentum,
and energy transfer in media of various nature. It was experimentally discovered [11,12] that
multi-scale and multi-stage energy exchange is a mechanism of the structural evolution of a physical
system far from thermodynamic equilibrium. The description of such processes requires solving a
whole complex of fundamental problems of modern science: the creation of a theory of turbulence,
thermodynamics of highly non-equilibrium processes, and non-equilibrium statistical mechanics of
open systems. Obviously, only an interdisciplinary approach is required to solve this global problem.

Developed on the basis of non-equilibrium statistical mechanics [26] and control theory [34], a new
approach to describing non-equilibrium processes [27–29] allows for constructing mathematical models
of the processes that describe the formation and development of turbulent structures, including external
influences, dimensions and geometry of the system, as well as take into account the incompleteness of
information about the history of the system in the form of the dynamics of spatial-temporal correlations.
Similar to the inverse problems of quantum mechanics, the use of the formalism of operators in a
Banach space allows us to formulate a problem of the spectrum of spatial-temporal scales of dynamical
structures formed in bounded systems due to external action across boundaries. As for a sufficiently
deep potential well, the energy spectrum should have discrete levels, and a strong impact on the
surface of a condensed medium, experiments show, generates a set of the structure elements of the
same type at several intermediate scales. As in quantum mechanics during the propagation of a pulse
in an inhomogeneous medium with dispersion, wave packets of elastic-plastic waves are formed,
spread, and interfere.

In this paper, on the basis of the integral model of elastic-plastic waves (12) propagating in
a dispersive medium, we formulate the problem of the spectrum of relaxation and delay times
that evolve when the wave packet spreads. On the basis of the theory of a special type nonlinear
operators depending on parameters [35,36], a variant of the iterative procedure sweeping along the
system evolution path is proposed, which can make it possible to calculate the dynamics of turbulent
structures in media of different nature at different scale levels.

Unfortunately, we were not able to bring the solution of the formulated problem to a number and
to demonstrate a specific result. The fact is that our integral operators working at the mesolevel are
much more complicated than in inverse problems of quantum mechanics, since they themselves evolve
during the wave propagation. We have proposed only a formulation of the problem, which is a new
mathematical object. Methods for solving such problems have not yet been developed. In addition,
their solution requires the use of consistent experimental data on the evolution of the wave profiles and
wave packets. It is also a very time-consuming and complex technical task that will not be solved soon.

In Ref. [41], a much simpler example of discrete values of the structure sizes is presented. By using
the same approach in the case of high-speed shear motion of a condensed medium, it was obtained
that chains of vortices of the same size arise near the boundaries. This is indeed a whole complex of
new problems that require a lot of effort of many researchers. However, we decided that it is worth
showing now that new, non-traditional approaches to their solution that will attract the attention of
specialists in various disciplines can be promising and give impetus to new technologies in the future.

Author Contributions: Conceptualization, T.A.K.; methodology, T.A.K.; investigation, T.A.K. and V.M.K.;
writing—original draft preparation, T.A.K. and V.M.K.; writing—review and editing, V.M.K.; visualization,
V.M.K. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Rudyak, V.Y.; Minakov, A.V. Thermophysical properties of nanofluids. Eur. Phys. J. E 2018, 41, 15. [CrossRef]

http://dx.doi.org/10.1140/epje/i2018-11616-9


Particles 2020, 3 574

2. Rudyak, V.; Belkin, A. Statistical mechanics of transport processes of fluids under confined conditions.
Nanosyst. Phys. Chem. Math. 2015, 6, 366–377. [CrossRef]

3. Asay, J.R.; Chhabildas, L.C. Paradigms and Challenges in Shock Wave Research. In High-Pressure Compression
of Solids VI: Old Paradigms and New Challenges; Horie, Y., Davison, L., Thadhani, N. N., Eds.; Springer:
New York, NY, USA, 2003; pp. 57–108.

4. Panin, V.E.; Egorushkin, V.E.; Panin, A.V. Physical mesomechanics of a deformed solid as a multilevel system.
1. Physical fundamentals of the multilevel approach. Phys. Mesomech. 2006, 9, 9–20.

5. Makarov, P.V. On the hierarchical nature of deformation and fracture of solids. Phys. Mesomech. 2004,
7, 25–34.

6. Meshcheryakov, Y.I.; Khantuleva, T.A. Nonequilibrium processes in condensed media. Part 1. Experimental
studies in light of nonlocal transport theory. Phys. Mesomech. 2015, 18, 228–243. [CrossRef]

7. Lebon, G.; Jou, D.; Casas-Vazquez, J. Understanding Non-Equilibrium Thermodynamics; Springer: Berlin,
Germany, 2008.

8. Haken, H. Information and Self-Organization. A Macroscopic Approach to Complex Systems; Springer: Berlin,
Germany, 2006.

9. Nicolis, G.; Prigogine, I. Self-Organization in Nonequilibrium Systems. From Dissipative Structure to Order
through Fluctuations; Wiley: New York, NY, USA, 1977.

10. Lee, J. The universal role of turbulence in the propagation of strong shocks and detonation waves.
In High-Pressure Compression of Solids VI: Old Paradigms and New Challenges; Horie, Y., Davison, L.,
Thadhani, N.N., Eds.; Springer: New York, NY, USA, 2003; pp. 121–144.

11. Meshcheryakov, Y.I.; Divakov, A.K.; Zhigacheva, N.I.; Makarevich, I.P.; Barakhtin, B.K. Dynamic structures
in shock-loaded copper. Phys. Rev. B 2008, 78, 064301. [CrossRef]

12. Meshcheryakov, Y.I.; Divakov, A.K.; Zhigacheva, N.I.; Barakhtin, B.K. Regimes of interscale momentum
exchange in shock deformed solids. Int. J. Impact Eng. 2013, 57, 99–107. [CrossRef]

13. Khantuleva, T.A. The shock wave as a nonequilibrium transport process. In High-Pressure Compression of
Solids VI: Old Paradigms and New Challenges; Horie, Y., Davison, L., Thadhani, N.N., Eds.; Springer: New York,
NY, USA, 2003; pp. 215–254.

14. Khantuleva, T.A. Self-organization at the mesolevel at high-rate deformation of condensed media.
Khimicheskaya Fizika 2005, 24, 36–48.

15. Morozov, V.; Kats, V.; Savenkov, G.; Lukin. A. Mechanisms of fracture of ring samples made of FCC metals
on loading with magnetic-pulse method AIP Conf. Proc. 2018, 1959, 100006.

16. Morozov, V.A.; Bogatko, V.I.; Atroshenko, S.A.; Kats V.M.; Gazizullina, A.R. Loading, Deformation, and
destruction of cylindrical samples of polymethylmethacrylate and fluoroplastic using an electric explosion
of conductors. Tech. Phys. 2020, 65, 221–225. [CrossRef]

17. Chabildas, L.C.; Trott, W.M.; Reinhart, W.D.; Cogar, J.R.; Mann, G.A. Incipient spall studies in
tantalum—Microstructural effects. AIP Conf. Proc. 2002, 620, 483–486.

18. Furnish, M.D.; Trott, W.M.; Mason, J.; Podsednik, J.; Reinhart, W.D.; Hall, C. Assessing mesoscale material
response via high resolution line-imaging VISAR. AIP Conf. Proc. 2003, 706, 1159–1163.

19. Swegle, J.W.; Grady, D.E. Shock velocity and the prediction of shock-wave times. J. Appl. Phys. 1985, 58,
692–699. [CrossRef]

20. Gilman, J.J. Mechanical states of solids. AIP Conf. Proc. 2002, 620, 36–41.
21. Gilman, J.J. Response of condensed matter to impact. In High-Pressure Compression of Solids VI: Old Paradigms

and New Challenges; Horie, Y., Davison, L., Thadhani, N.N., Eds.; Springer: New York, NY, USA, 2003;
pp. 279–296.

22. Meshcheryakov, Y.I.; Atroshenko, S.A. Multiscale rotations in dynamically deformed solids. Int. J. Solids
Struct. 1992, 29, 2761–2778. [CrossRef]

23. Meshcheryakov, Y.I.; Divakov, A.K. Multiscale kinetics and strain-rate dependence of materials. Dymat J.
1994, 1, 271–287.

24. Panin, V.E. (Ed.) Physical Mesomechanics and Computer-Aided Design of Materials; Nauka: Novosibirsk,
Russia, 1995.

25. Panin, V.E. Foundations of physical mesomechanics. Phys. Mesomech. 1998, 1, 5–20.
26. Zubarev, D.N. Non-Equilibrium Statistical Thermodynamics; Springer: New York, NY, USA, 1974.

http://dx.doi.org/10.17586/2220-8054-2015-6-3-366-377
http://dx.doi.org/10.1134/S1029959915030078
http://dx.doi.org/10.1103/PhysRevB.78.064301
http://dx.doi.org/10.1016/j.ijimpeng.2013.01.005
http://dx.doi.org/10.1134/S1063784220020152
http://dx.doi.org/10.1063/1.336184
http://dx.doi.org/10.1016/0020-7683(92)90117-C


Particles 2020, 3 575

27. Khantuleva, T.A. Nonlocal Theory of Nonequilibrium Transport Processes; St Petersburg University Publishing:
St Petersburg, Russia, 2013. (In Russian)

28. Khantuleva, T.A. Thermodynamic evolution far from equilibrium. AIP Conf. Proc. 2018, 1959, 100003.
29. Khantuleva, T.A. On the description of non-equilibrium transport processes and formation of dynamic

structures in liquid media. Fundam. Prikl. Gidrofiz. 2020, 13, 3–14.
30. Khantuleva, T.A.; Meshcheryakov, Y.I. Mesoscale plastic flow instability in a solid under high-rate

deformation. Phys. Mesomech. 2017, 20, 417–424. [CrossRef]
31. Khantuleva, T.; Shalymov, D. Modelling non-equilibrium thermodynamic systems from the speed-gradient

principle. Philos. Trans. Royal Soc. A 2017, 375, 20160220. [CrossRef] [PubMed]
32. Bogoliubov, N.N. Problems of Dynamic Theory in Statistical Physics; Technical Information Service: Oak Ridge,

TN, USA, 1960.
33. Jaynes, E. The Maximum Entropy Formalism; MIT: Cambridge, MA, USA, 1979.
34. Fradkov, A.L. Cybernetical Physics: From Control of Chaos to Quantum Control; Springer: Berlin, Germany, 2007.
35. Vavilov, S.A. Geometric methods of studying the solvability of a class of operator equations. Rus. Acad. Sci.

Dokl. Math. 1992, 45, 276–280.
36. Vavilov, S.A. On the solvability of one class of boundary value problems. Differ. Integral Equ. 1990, 3, 175–179.
37. Ivanov, M.G. How to Understand Quantum Mechanics; R&C Dynamics: Moscow-Izhevsk, Russia, 2012.

(In Russian)
38. Chaoqun, L.; Yonghua, Y.; Ping, L. Physics of turbulence generation and sustenance in a boundary layer

Comput. Fluids 2014, 102, 353–384.
39. Ravichandran, G.; Rosakis, A.J.; Hodovany, J.; Rosakis, P. On the convention of plastic work into heat during

high-strain-rate deformation. AIP Conf. Proc. 2002, 620, 557–562.
40. Fradkov, A.L.; Khantuleva, T.A. Cybernetic model of the shock induced wave evolution in solids.

Procedia Struct. Integrity 2016, 2, 994–1001. [CrossRef]
41. Khantuleva, T.; Shalymov, D. Nonlocal hydrodynamic modeling high-rate shear processes in condensed

matter. J. Phys. Conf. Ser. 2020, 1560, 012057. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1134/S1029959917040063
http://dx.doi.org/10.1098/rsta.2016.0220
http://www.ncbi.nlm.nih.gov/pubmed/28115617
http://dx.doi.org/10.1016/j.prostr.2016.06.127
http://dx.doi.org/10.1088/1742-6596/1560/1/012057
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Mesoscopic Structure Formation in Shock-Induced Processes
	New Approach to the Multi-Scale Processes far from Equilibrium
	Integral Model of the Elastic-Plastic Wave Propagation in Condensed Matter
	Interference of Elastic-Plastic Waves
	Discrete Spectra of Meso-Scale Structure in the Shocked Material
	Evolution of the Turbulent Structure Lifetimes
	Mathematical Apparatus to Solve the Problem
	Conclusions
	References

