
ENHANCED DYNKIN DIAGRAMS DONE RIGHT
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Introduction

In the present paper we draw the enhanced Dynkin diagrams of Eugene Dynkin
and Andrei Minchenko [8] for senior exceptional types Φ = E6,E7 and E8 in a right
way, à la Rafael Stekolshchik [26], indicating not just adjacency, but also the signs
of inner products. Two vertices with inner product −1 will be joined by a solid line,
whereas two vertices with inner product +1 will be joined by a dotted line.

Provisionally , in the absense of a better name, we call these creatures signed en-
hanced Dynkin diagrams. They are uniquely determined by the root system Φ itself,
up to [a sequence of] the following tranformations: changing the sign of any vertex
and simultaneously switching the types of all edges adjacent to that vertex.

Theorem 1. Signed enhanced Dynkin diagrams of types E6, E7 and E8 are depicted
in Figures 1, 2 and 3, respectively.

In this form such diagrams contain not just the extended Dynkin diagrams of all
root subsystems of Φ — that they did already by Dynkin and Minchenko [8] — but
also all Carter diagrams [6] of conjugacy classes of the corresponding Weyl group
W (Φ).

Theorem 2. The signed enhanced Dynkin diagrams of types E6, E7 and E8 contain
all Carter—Stekolshchik diagrams of conjugacy classes of the Weyl groups W (E6),
W (E7) and W (E8).

In both cases the non-parabolic root subsystems, and the non-Coxeter conjugacy
classes occur by exactly the same single reason, the exceptional behaviour of D4, where
the fundamental subsystem can be rewritten as 4 A1, or as a 4-cycle, respectively,
which constitutes one of the most manifest cases of the octonionic mathematics
[2], so plumbly neglected by Vladimir Arnold (mathematica est omnis divisa in
partes tres, see [1]).

As a most immediate benefit, this provides an extremely powerful mnemonic tool,
to easily reconstruct both the complete lists of root subsystems, and the complete
lists of conjugacy classes of W (E6), W (E7), W (E8) within quarter of an hour on a
scrap of paper. But as every powerful tool, it may have more than one use. In a
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subsequent paper we plan to establish several further combinatorial results concerning
these diagrams. However, here we concentrate on a construction of the pictures
themselves, in the hyperbolic realisation of the root systems E6, E7 and E8, see [15].

The present paper is organised as follows. In § 1 we reproduce some historical
background to place our diagrams in context. In § 2 we recall some basic notation
related to root systems and to the hyperbolic realisations of the exceptional root
systems E6, E7 and E8, that are used in subsequent calculations. In § 3 we perform
the inductive procedure à la Dynkin—Minchenko, to construct Figures 1–3 and prove
Theorem 1. In § 4 we list all non-Coxeter classes of the Weyl groups W (E6), W (E7)
and W (E8), depict all irreducible admissible diagrams with cycles occuring in these
groups, Figures 5–6, and observe that all of them occur inside Figures 1–3, thus
proving Theorem 2. Finally, in § 5 we make some further comments regarding these
pictures and some of their uses.

However, the main new bid of the present paper are the diagrams themselves,
Figures 1–3. They are bound to have many further uses, apart from the ones of
which we are aware today.

The present work, together with [19] constitures part of the Bachelor Qualifying
Paper of the first-named author under the supervision of the second-named author.

1. Some background

While reconsidering the combinatorial structure of the Gosset—Elte polytopes and
calculating the corresponding cycle indices [19] we had an occasion to take another
look at the subsystems of the exceptional root systems, and the conjugacy classes of
their Weyl group.

Classification of both stocks of creatures are very classical and well-known. Up
to conjugacy, susbsystems of root systems were determined by Armand Borel and
Jacques de Siebenthal, who proposed a general method, and by Eugene Dynkin [7],
who came up with explicit lists, in the late 1940-ies and early 1950-ies.

The [moderately] challenging cases were E7 and E8, which accomodate non-conjugate
isomorphic subsystems. See also [32] and [20] for alternative approach and our papers
[12, 30] for the explicit lists and some further related details.

1.1. Carter diagrams. Approximately simultaneously with the above, conjugacy
classes of the Weyl groups W (E6) and W (E7) were determined by Sutherland Frame
[9], the senior case of W (E8) came later [10]. However, unlike the description of
root subsystems, all of these papers addressed various types individually. The first
[somewhat] uniform approach was only developed by Roger Carter [5, 6].

Very roughly, Carter’s description looks as follows. Predominantly, conjugacy
classes of the Weyl group W (Φ) are represented by Coxeter elements of subsystems
of the root system ∆ ≤ Φ. Let Γ be a fundamental subsystem of ∆. Recall that a
Coxeter element w∆ = wΓ of W (∆) ≤ W (Φ) is the product of fundamental reflections
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e0 + e1 + e4 + e5e2 − e1 = α1

e3 − e2 = α3 e4 − e3 = α4

α6 = e6 − e5

α0 = 2e0 + e1 + ...+ e6

α2 = e0 + e1 + e2 + e3

α5 = e5 − e4

Figure 1. Enhanced Dynkin diagram of type E6

wα, a ∈ Γ, corresponding to the fundamental roots α ∈ Γ of ∆, their order is immar-
terial, since all such elements are all conjugate. Overwelmingly, non-conjugate root
subsystems produce different conjugacy classes. However, not all conjugacy classes
arise that way.

The missing conjugacy classes result from what Carter himself calls admissible
diagrams , that nowadays are usually called Carter diagrams. Basically, these are
diagrams constructed from linearly independent subsets of roots in exactly the same
way as Dynkin diagrams. Namely, two roots α and β are joined with a single bond
if the product wαwβ of the corresponding reflections has order 3. Similarly, they are
joined with a double bond if the order of wαwβ is 4. We may safely forget G2, where
nothing new can possibly occur.

Unlike Dynkin diagrams themselves, Carter diagrams can contain cycles, admis-
sibility amounts to the requirement that all of their cycles are even. Every Carter
diagram C produces a conjugacy class in W (Φ) as follows. Unlike Coxeter elements,
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we cannot simply designate wC as the product of all wα, a ∈ C, since in the presence
of cycles the conjugacy class of such a product can — and does! — depend on the
order of factors. However, since all cycles of C are even, the graph C is bipartite, its
vertices can be partitioned into two disjoint subsets X and Y consisting of pair-wise
orthogonal roots. Let wX and wY be the products of reflections wα, where α ∈ X or
α ∈ Y , respectively. Obviously, wX and wY are involutions, and the conjugacy class
of the semi-Coxeter element represented by C is wC = wXwY does not depend on
the choice of such X and Y .

There are further complications, but eventually, as a result of lengthy arguments
reminiscent of the classification of Dynkin diagrams themselves, and arduous com-
putations, Carter succeeds in mustering a collection of diagrams that produce all
conjugacy classes of W (Φ) in this fashion.

In fact, almost immediately Pawan Bala and Roger Carter discovered the close con-
nection between conjugacy classes of the Weyl groups and the unipotent conjugacy
classes of the corresponding Chevalley groups [3]. This connection was then made
more precise and explicit, and then extensively studied by Tonny Springer, Nicolas
Spaltenstein, David Kazhdan and especially by George Lusztig, see, in particular,
[14].

1.2. Stekolshchik diagrams. Subsequently, several alternative approaches to the
classification of conjugacy classes were proposed, including the extremely illuminating
work of Tonny Springer [22] and of Meinolf Geck and Götz Pfeiffer, see [11] and
references there. Nonetheless, Carter’s list itself remained somewhat misterious. Part
of that mistery was lifted by Rafael Stekolshchik in [23, 24, 25] the final version was
published in 2017 in the journal of Lugansk University [26]

In these texts, Stekolshchik made several extremely pertinent observations.

• Diagrams with cycles of arbitrary even length can be reduced to diagrams with
cycles of length 4 alone. In particular, this explains why the admissible diagrams
with cycles of lengths 6 and 8 that appear for the types E7 and E8 do not make their
way to the lists of conjugacy classes.

Of course, this is what eventually transpires in Carter’s proof as well, but there it
only happens at the very last step, when the admissible diagrams with long cycles
are eliminated as a result of summing up the orders of the conjugacy classes obtained
so far. Stekolshchik provides a direct case by case verification of the fact that the
semi-Coxeter element constructed from an admissible diagram with long cycles is
conjugate to the semi-Coxeter element constructed from another admissible diagram
with cycles of length 4 alone.

• One should explicitly mark the sign of the inner product in Carter diagrams.
Stekolshchik himself denotes the negative inner product of two roots by solid bonds ,
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and the positive inner product — by dotted bonds . We follow this convention in the
present paper1.

The vertices of an extended Dynkin diagram are linearly dependent. In follows
that they cannot form a part of an admissible diagram. In particular, any diagram
containing a cycle consisting of solid edges alone is not admissible — any such cycle
should contain an odd number of dotted edges.

• The cyclic order of reflections with respect to the roots forming a 4-cycle in D4

leads to the Coxeter class D4 of W (D4) of order 32, whereas the bipartite order, as
described above, leads to the semi-Coxeter class D4(a1) of order 12.

Essentially, Stekolshchik proves that all non-Coxeter classes are explained by this
single phenomenon. Some elements in the Coxeter class of D4 can be rewritten as
products of the reflections corresponding to 4-cycles, in cyclic order. By iterating this
procedure for various copies of D4, one can eventually obtain all diagrams in Carter’s
lists.

1.3. Dynkin—Minchenko diagrams. However, some time before that Dynkin and
Minchenko [8] made another extremely important observation. As we know, by 2010
both the algorithm to construct root subsystems, and the lists of those were known
for some 60 years. However, the genuine explanation of these lists was missing. Here
are the key new observations of [8].

• All root subsystems of Φ are uniformly constructed using their maximal subsets of
pair-wise orthogonal roots. Again, occurence of all such non-parabolic subsystems is
explained by a single exceptional phenomenon, the presence of 4 pair-wise orthogonal
roots in D4.

• All instances, where two isomorphic subsystems of E7 and E8 are non-conjugate,
are uniformly explained by the presence of 4 pair-wise orthogonal roots in D4 — they
either have charge 4 themselves, or [in the case of E7] are orthogonal completions to
one root in systems of charge 4 (and thus have charge 3).

This led the authors of [8] to the discovery of what they call enhanced Dynkin
diagrams. These diagrams are built up inductively as follows.

• We start with the usual Dynkin diagram of type Φ.

• For every node of degree three we look at the corresponding copy of D4 spanned
by this node and the three adjecent nodes. We add the maximal root of this copy of
D4 — or, actually, its opposite.

1It should be noted that in [8] dotted lines are charged with three completely different meanings.
In Figure 2 the bold dotted bond denotes the [unique] bond that completes the initial Dynkin
diagram of Φ to the extended Dynkin diagram. In the Figures 2, 3 and 4 the thin dotted bonds
denote the bonds hidden in the usual Euclidean picture. In Firure 3 the bold dotted bonds denote
the emerging bonds at a certain step of the inductive procedure.
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e0 + e1 + e4 + e5e2 − e1 = α1

e3 − e2 = α3 e4 − e3 = α4

α6 = e6 − e5

α0(E6) = 2e0 + e1 + ...+ e6

α2

α5 = e5 − e4

2e0 + e2 + ...+ e7 = α0(E7)

e0 + e1 + e6 + e7

α7 = e7 − e6

Figure 2. Enhanced Dynkin diagram of type E7

• However, the roots emerged at the previous step can be themselves joined to
some other roots, which would then produce new nodes of degree three.

• This procedure should be repeated quantum sufficit = until complete satisfaction,
the step, where no new vertices of degree three occur.

The resulting diagram contains Dynkin diagrams of all root subsystems up to con-
jugacy . By picking up its subsets — obviously, it suffices to take linearly independent
ones — we now get representatives of all fundamental subsystems of all possible root
subsystems.

As another interesting feature, observe that the exceptional enhanced Dynkin di-
agrams contain the extended Dynkin diagrams = the usual Dynkin diagrams
augmented by the [negative] maximal root of the initial subsystem. For classical
types, this is not necessarily the case. For Φ = Al all root subsystems and all conju-
gacy classes of W (Al) = Sl+1 are parabolic, they correspond to partitions of l+1 and
thus the enhanced Dynkin diagram is the usual Dynkin diagram. For Φ = Dl the
answer depends on the parity of l. The enhanced Dynkin diagram of type D4 is the
extended Dynkin diagram. and similarly for all even l = 2m the enhanced Dynkin
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diagram contains the maximal root of Dl and thus the extended Dynkin diagram.
But for odd l = 2m+ 1 it does not!

Since the authors of [8] were only interested in root subsystems, they were effec-
tively looking not at the roots of Φ, but at its subsystems of type A1 — what they
call projective roots.

In the present paper, we effectively merge both approaches, which leads to the
diagrams that contain representatives of both Dynkin diagrams of all root subsystems
of Φ, and Stekolshchik diagrams of all conjugacy classes of W (Φ).

2. Notation

2.1. Root systems. In all that regards root systems, including the numbering of
their fundamentral roots, we follow Bourbaki [4]. In particular, Φ is a reduced irre-
ducible root system of rank l, W = W (Φ) is its Weyl group.

Fix an order on Φ, and let Π = {α1, . . . , αl} be the corresponding set of funda-
mental roots, Φ+ and Φ− be the corresponding sets of positive and negative roots,
respectively. Let Π be the extended fundamental system of Φ. It is obtained by
appending to Π the root α0 = −δ, where δ is the highest root of Φ with respect to
the fundamental system Π.

Recall that in the Dynkin form the highest roots of E6, E7 and E8 are depicted as

12321
2

, 234321
2

, 2465432
3

.

For a root α ∈ Φ we denote by wα ∈ W the corresponding root reflection. It is
clear that wwαw

−1 = wwα for all w ∈ W . Usually we denote the fundamental root
reflection wαi simply by wi. Observe that, in many books on Lie algebras and Coxeter
groups, it is denoted by si. It is well known that the fundamental reflections generate
the Weyl group, W = 〈w1, . . . , wl〉

. For two root systems —∆ and Σ, we denote by ∆ + Σ their orthogonal sum. In
particular, k∆ = ∆1 + . . . + ∆k is the orthogonal sum of k isomorphic summands.
It is sometimes convenient to consider also the empty root system A0 = ∅ of rank 0.
Recall that D1 = D0 = ∅.

2.2. Hyperbolic realisation of El. In the present paper we are predominantly
interested in the cases Φ = E6,E7,E8. As in [12, 27, 30], we use the hyperbolic
realization of these systems in the (l + 1)-dimensional Minkowsky space [15]. This
realization is considerably more suitable for large-scale calculations than the usual
realizations in Euclidean space.

Consider a real vector space V = Rl,1 of dimension l + 1 endowed with a nonde-
generate symmetric inner product ( , ) : V × V −→ R of signature (l, 1). Fix an
orthonormal base e0, e1, . . . , el such that (e0, e0) = −1 and (ei, ei) = 1 for all 1 ≤ i ≤ l.
We are primarily interested in the case l = 8.
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γ145α1

α3 α4

α6

η78

α2

α5

η18

γ167

α7

η12

η56

α8

ζ8

η34

Figure 3. Enhanced Dynkin diagram of type E8

Fix the following fundamental system Π = {α1, . . . , α8} in Φ = E8:

α1 = e2 − e1, α2 = e0 + e1 + e2 + e3, α3 = e3 − e2, α4 = e4 − e3,

α5 = e5 − e4, α6 = e6 − e5, α7 = e7 − e6, α8 = e8 − e7.

To obtain the root system E7, it suffices to take roots in E8 such that α8 does not
occur in their linear expansion with respect to the fundamental roots. By the same
token, to get a root system of type E6 it suffices to take roots in E8 such that both α7

and α8 do not occur in their linear expansion with respect to the fundamental roots.

In particular, every element of Φ+ has one of the following forms:

βij = ei − ej, i > j,

γijh = e0 + ei + ej + eh,

ηij = 2e0 + e1 + . . .+ êi + . . . .+ êj + . . .+ e8,

ζi = 3e0 + e1 + . . .+ 2ei + . . .+ e8,
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where the indices i, j, h = 1, ..., 8 are pairwise distinct, while the hat̂over a summand
signifies that this summand should be omitted.

3. Proof of Theorem 1

Now we are all set to provide detailed constructions of the enhanced Dynkin dia-
grams and thus finish the proof of Theorem 1 stated in the introduction.

We build up the diagrams inductively by the same procedure as Dynkin and
Minchenko, but controlling the signs of the resulting roots. Moreover, for senior
cases we do not start the construction from scratch, but rather explicitly use the
embeddings E6 ≤ E7 ≤ E8. Thus, we start with 6 fundamental roots of E6 and con-
secutively adjoin 2 + 3 + 5 further roots. However, two of these new nodes, namely
α7 for E7 and α8 for E8 come gratis, so that we only have to repeat the inductive
step 8 times.

3.1. Type E6. We start with the root system of type E6 generated by the above
fundamental roots α1, . . . , α6.

• This Dynkin diagram has a single node of degree 3, represented by the root α4.
As a first step of the construction, we adjoin the maximal root of the subsystem of
type D4 spanned by α2, α3, α4, α5. Clearly, this is

γ145 = e0 + e1 + e4 + e5 = 01210
1

,

which has negative inner products both with α1 and α6.

• The previous step engenders a new node of degree 3 and the procedure should
be repeated for the resulting copy of D4 spanned by α1, α4, α6 as terminal nodes and
γ145 as the central node. Clearly, the maximal root of this system is

2γ145 + α1 + α6 − α4,

the minus sign is explained by the fact that the inner product of γ145 and α4 is
positive. Thus the new node to be adjoined is the maximal root of the initial root
system Φ = E6,

η78 = 12321
2

,

which has negative inner products with γ145 and with α2.

In the resulting diagram all nodes have degrees 2 or 4, so that the inductive pro-
cedure for E6 is complete.

3.2. Type E7. Now we take as input the enhanced Dynkin diagram of type E6 con-
structed in the previous subsection, and adjoin the new fundamental root α7. This
engenders two new degree 3 nodes, namely α6 is now joined to α5, α7 and γ145,
whereas η78 is now joined to α2, α7 and γ145 and we should repeat the inductive step
for each of these two central nodes.
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• First, consider the copy of D4 generated by α5, α7 and γ145 as terminal nodes
and α6 as the central node. Clearly, the maximal root of this system is

γ145 + α5 + 2α6 + α7 = γ167 = e0 + e1 + e6 + e7 = 012221
1

.

By construction it has positive inner product with α6. But since the only fundamental
root occuring in γ145 that has non-zero inner product with α1 is α3, it follows that
γ145 has negative inner product with α1.

This makes α1 a new node of degree 3. But hold on, we are not yet finished with
the nodes of degree 3 that cropped up at the previous step.

• Next, consider the copy of D4 generated by α2, α7 and γ145 as terminal nodes
and η78 as the central node. Clearly, the maximal root of this system is

2η78 − α2 + α7 − γ145 = η18 = 2e0 + e2 + . . .+ e7 = 234321
2

,

which is the maximal root of the root system Φ = E7. By the very construction it has
positive inner product with η78. But it also happens to have positive inner product
with α1.

In the resulting diagram all nodes have degrees 2 or 4, so that the inductive pro-
cedure for E7 is complete.

3.3. Type E8. Again, we take as input the enhanced Dynkin diagram of type E7

constructed in the previous subsection, and adjoin the new fundamental root α8.
Obviously, α8 is joined to all degree 2 nodes α7, γ167 and η18. Thus, we have to
perform the usual induction step for α8 itself. Moreover, all three nodes of degree 2
in the lower plane the enhanced Dynkin diagram of type E7 become nodes of degree
3. Specifically, α7 is now joined to α6, α8 and η78; whereas γ167 is now joined to α1, α6

and α8; and finally η17 which is now joined to α1, α8 and η78. Thus, we should repeat
the inductive step for each of these four central nodes. In the meantime, new nodes
of degree 3 could occur, but as we know from the previousl subsection, we should not
be concerned, since further bonds may arise while we are completing the inductive
steps for those nodes that have cropped up already.

• First, consider the copy of D4 generated by α7, γ167 and η18 as terminal nodes
and α8 as the central node. Clearly, the maximal root of this system is

η18 + γ167 + α7 + 2α8 = ζ8 = 3e0 + e1 + . . .+ e7 + 2e8 = 2465432
3

,

which is the maximal root of the root system Φ = E8.

So far it is not connected to any further root apart from α8 itself, but hold on, hold
on, we are not finished yet. Eventually, it will be connected with all three emerging
nodes, and will have degree 4, as any other root.

• Next, consider the copy of D4 generated by α6, α8 and η78 as terminal nodes and
α7 as the central node. Clearly, the maximal root of this system is

η78 + α6 + 2α7 + α8 = η56 = 2e0 + e1 + . . .+ e4 + e7 + e8 = 1232221
2

.
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D4 D4(a1)

D5 D5(a1)

D6 D6(a1)

D6(a2)

D7 D7(a1)

D7(a2)

D8 D8(a1)

D8(a2)

D8(a3)

Figure 4. Irreducible admissible diagrams of types Dl, 4 ≤ l ≤ 8
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Obviously, it has negative inner product with α5 and positive inner products with α2

and with ζ8.

• Further, consider the copy of D4 generated by α1, α6 and α8; as terminal nodes
and γ167 as the central node. Clearly, the maximal root of this system is

2γ167 + α1 − α6 + α8 = η34 = 2e0 + e1 + e2 + e5 + . . .+ e8 = 1244321
2

.

Obviously, it has negative inner product with α3 and positive inner products with α5

and with ζ8.

• Finally, consider the copy of D4 generated by α1, α8 and η78. as terminal nodes
and η17 as the central node. Clearly, the maximal root of this system is

2η17 − α2 − η78 + α8 = η12 = 2e0 + e3 + . . .+ e8 = 2454321
2

.

Obviously, it has negative inner product with α2 and positive inner products with α3

and with ζ8.

In the resulting diagram all nodes have degree 4, so that the inductive procedure
for E8 and the proof of theorem stated in the introduction are now complete.

4. Proof of Theorem 2

Here we do not give an a priori proof of the fact that all admissible diagrams are
in fact contained in the signed enhanced Dynkin diagrams. Such a proof, combining
the ideas of [6, 11, 8, 26] could be given, and would provide an alternative description
of conjugacy classes of the Weyl groups W (El), l = 6, 7, 8. But it would requre a
detailed combinatorial analysis of the diagrams themselves, and we plan to return to
it in a subsequent work, see the last section.

Instead, here we provide an a posteriori observation that all Carter—Stekolshchik
diagrams are in fact subdiagrams of the [signed] ehnanced Dynkin diagrams — in
the style of ancient “look” or the fashionable present-day computer “experimental”
mathematics.

Such diagrams without cycles are in fact Dynkin diagrams of root subsystems in
Φ. They are trees and, thus, the distinction between solid and dotted lines does not
play a role. That all of them are subdiagrams of the corresponding enhanced Dynkin
diagram is the main result of [8], Theorem 1.1. Initially, it was the main mission of
the enhanced Dynkin diagrams.

Thus, we only have to look at the admissible diagrams with cycles. The number of
such diagrams, including the reducible ones, and those that come from smaller ranks,
are 4 for W (E6), 13 for W (E7) and, finally, 36 for W(E8). Let us list them all in the
order they occur in Carter’s [6], Tables 8–10, — of course, the first two of these lists
are sublists of the next ones, sometimes more than once.

• For type E6:

D4(a1), D5(a1), E6(a1), E6(a2).
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E6 E6(a1)

E6(a2)

E7 E7(a1)

E7(a2)

E7(a3)

E7(a4)

Figure 5. Irreducible admissible diagrams of types E6 and E7

• For type E7:

D4(a1), D4(a1) + A1, D5(a1),

D5(a1) + A1, D6(a1), D6(a2), E6(a1), E6(a2),

D6(a2) + A1, E7(a1), E7(a2), E7(a3), E7(a4).
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• For type E8:

D4(a1), D4(a1) + A1, D5(a1),

D4(a1) + A2, D5(a1) + A1, D6(a1), D6(a2), E6(a1), E6(a2),

D4(a1) + A3, D5(a1) + A2, D6(a2) + A1, E6(a1) + A1, E6(a2) + A1,

D7(a1), D7(a2), E7(a1), E7(a2), E7(a3), E7(a4),

2 D4(a1), D5(a1) + A3, D8(a1), D8(a2), D8(a3),

E6(a2) + A2, E7(a2) + A1, E7(a4) + A1,

E8(a1), E8(a2), E8(a3), E8(a4), E8(a5),

E8(a6), E8(a7), E8(a8).

The irreducible admissible diagrams of types Dl, 4 ≤ l ≤ 8, that occur in these
lists are all listed in Figure 5, whereas all those of types E6 and E7 are reproduced in
Figure 5, and those of type E8 — in Figure 8.

We leave it to the reader as an exercise to find all admissible diagrams of the
corresponding types in Figures 1–3. That’s exactly an observation with which the
present work started. After you succeed in doing that for E6(a1), the rest becomes
obvious.

5. Final remarks

Let us make some further scattered observations concerning the symmetry of the
above diagrams, their further uses, and some of our immediate plans.

• The enhanced Dynkin diagrams of types E6 and E8 are extremely symmetric.
Both are bipartite graphs consisting of two maximal subsets of pair-wise orthogonal
roots = mosets, in the terminology of [8]. Like 4 A1 t 4 A1 in the case of E6 and
8 A1 t 8 A1 in the case of E8.

At the same time, the enhanced Dynkin diagrams of types E7 looks weird. It is
again a bipartite graph, but now of the form 7 A1 t 4 A1, where 7 A1 is, as above, a
moset of E7, but 4 A1 is clearly a moset of E6. Worse than that, the roots of 7 A1

loose their symmetry w.r.t. a specific copy of 4 A1. Namely, whereas 6 of the roots
forming 7 A1 are nodes of degree 2 in the exhanced Dynkin diagram, one of them
has degree 4. However, modulo sign changes the normaliser of 7 A1 in W (E7) acts
as SL(3, 2) and thus is transitive on the seven copies of A1. This means that the
symmetry breaking depends on a specific choice of 4 A1.

The second-named author has already encountered such similar phenomenon on
several instances. It seems that E7 invariably exhibits much less symmetry than
do E6 and E8, see, in particular, [28, 29]. Actually, in 1935 Daniil Kharms already
commented this situation2: “We went to the Summer Garden and started to count

2Translated from Russian by Sergei Kisliakov.
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E8 E8(a1)

E8(a2)

E8(a3)

E8(a4)

E8(a5)

E8(a6)

E8(a7)

E8(a8)

Figure 6. Irreducible admissible diagrams of type E8



16 V. MIGRIN AND N. VAVILOV

trees there. But when the count reached 6, we stopped and began to dispute: some
speculated that 7 would follow, and some that 8”

Similarly, of the cases E6 and E8 the case of E8 seems to be much more symmetric.
The case of E6 exhibits obvious triality, in each moset occuring in the enhanced
Dynkin diagram one node has degree 4, whereas the other 3 have degree 2.

For E8 there are no preferred nodes, all of them have degree 4. Visualising the
enhanced Dynkin diagram of type E8 as a 4-cube, as we do, the two copies of 8 A1

become the vertices of the positive and negative demicubes , respectively.

• Dynkin and Minchenko visualise the enhanced Dynkind diagrams of types E7

and E8 differently. In their realisation the diagram for E7 consists of 4 vertices of a
tetrahedron + 6 midpoint of its edges + the centre joined to the vertices, but not
to the midpoints. Observe that the midpoints come as 3 pairs, corresponding to the
pairs of opposite edges of the tetrahedron. If you wish, you can visualise the copies
of A1 in 7 A1 as the points of the Fano plane, with the central node = central point,
and other points coming in pairs collinear with the central point.

Their diagram for E6 is the 4 × 4 net on a 2-dimensional torus. The exceptional
behaviour of this net, in particular, that it is much more symmetric than the nets of
different sizes, was simultaneously observed by other authors, notably by Vladimir
Kornyak [13]. Of course, again this is related to the exceptional behavious of D4 and
the additional symmetries that come from W (F4).

Observe that the same graphs also occur in a completely different context, as graphs
with certain extremal properties for their eigenvalues, see [17, 18]. Probably, there is
much more to it, than what we see today.

• Concerning the terminology itself, we do not think enhanced Dynkin diagram a
good name for this object, and it does not naturally tranlate to Russian. Even less
so for the signed enhanced diagram. Boris Kuniavsky suggested the name enriched
Dynkin diagrams, which already sounds much better. However, a posteriori, the
best solution would be to completely renounce the use of the term extended Dynkin
diagrams in the sense of affine Dynkin diagrams [4] and reserve the term extended
Dynkin diagrams to some form of Figures 1–3.

• The relation of these pictures to the arithmetic of quaternions and octonions
seems to be preeminent at all levels. In particular, there are manifest connections to
the construction of forms of simple Lie algebras and simple algebraic groups of types
E7 and E8 in terms of 7 A1 and 8 A1 in the works of Laurent Manivel [16] and Victor
Petrov [21].

We are positive that there are scores of similar covert beauties around, waiting
their time to be discovered and explained. The very special role of D4 comes over
and over again in a vast variety of situations. Thus, with respect to a given base the
study of semisimple root elements, triples of unipotent root elements, and many other
important structural elements of simple Lie algebras and simple algebraic groups are
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all reduced to the case of D4. See [31] for one such instance, and many further related
references.

• In a subsequent publication, we plan to return to the specific combinatorial study
of these pictures. In particular, we plan to explicitly enumerate subsets of roots in
Φ = E6,E7,E8 having the symmetry of an enhanced Dynkin diagram. Also, we
intend to clarify the connection with the classification of conjugacy classes of the
corresponding Weyl group W (Φ), and give an a priori explanation thereof.

We thank Boris Kunyavski, Anastasia Stavrova and Nikolai Vasiliev for their ex-
tremely pertinent questions and remarks during our talks.
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