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Abstract: A plethora of micro- and nanoparticle types are currently investigated for advanced ocular
treatment due to improved drug retention times, higher bioavailability and better biocompatibility.
Yet, comparative studies of both physicochemical and toxicological performance of these novel drug
delivery systems are still rare. Herein, poly(L-lactic acid)- and poly(ε-caprolactone)-based micro-
and nanoparticles were loaded with prednisolone as a model drug. The physicochemical properties
of the particles were varied with respect to their hydrophilicity and size as well as their charge
and the effect on prednisolone release was evaluated. The particle biocompatibility was assessed
by a two-tier testing strategy, combining the EpiOcularTM eye irritation test and bovine corneal
opacity and permeability assay. The biodegradable polyelectrolyte corona on the particles’ surface
determined the surface charge and the release rate, enabling prednisolone release for at least 30 days.
Thereby, the prednisolone release process was mainly governed by molecular diffusion. Finally, the
developed particle formulations were found to be nontoxic in the tested range of concentrations.

Keywords: poly(ε-caprolactone); poly(L-lactide); polymeric nanoparticle; alternative methods to
animal testing; biocompatibility; eye diseases; irritation; ocular drug delivery

1. Introduction

Nanotechnology is currently attracting attention for improving the treatment of ocular
anterior and posterior segments disorders [1–3]. Thereby topical, intravitreal, subcon-
junctival, and systemic administrations appear feasible [4]. Topical treatment is the most
convenient route and is most frequently used for conventional formulations in ophthalmol-
ogy [5,6]. However, physiological barriers in the eye and fast clearance of applied drugs
limit the intraocular bioavailability and ask for novel drug delivery systems [7].

Different polymeric nanoparticles have been intensively studied for ocular drug deliv-
ery, such as polymeric nanospheres, nanogels, micelles or liposomes, owing to their tunable
physiochemical properties and loading capacities [5]. Among such a broad spectrum of
particulate formulations, polyester-based particles, such as poly(L-lactic acid) (PLA) and
poly(ε-caprolactone) (PCL), are advantageous due to high drug loading and their ability
to increase drug retention time in the precorneal area, with encapsulated hydrophilic and
lipophilic drugs, such as sparfloxacin and brimonidine [8–11]. Polyester-based biodegrad-
able particles hold great potential in helping to mask drug irritation to the eye, increase
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drug loading, prolong the precorneal retention time of the drug, improve the penetration
of drugs across anatomical and physiological barriers in the eye to reach the inner anterior
segment [8–13]. However, the release profile of drugs from polyesters usually possess
an initial burst release stage. The intensity of this burst release depends on particle hy-
drophobicity and crystallinity [14]. Surface composition and particle size are known to
be critical for control over their storage stability [15], early elimination from the blood by
the phagocytosis process, and for particle interactions with cells [16,17]. Moreover, the
surface composition could be an important factor in the determination of drug release
kinetics [17,18]. Despite quite broad research on polyester-based nanoparticles, the system-
atic studies aimed to reveal the effect of different particle parameters on their drug release
properties [14] and biointeractions [19] are met quite rarely.

The classical studies of Yuri Lvov, Orlin Velev and Vesselin Paunov showed the
great impact of layer-by-layer modification of particulate formulations on their biomed-
ical properties [20,21]. For example, these approaches allow the construction of layers
of nanocarriers for the treatment of multi-drug resistant ovarian cancer [22], construct
GFP-reporter yeast for micro-screening systems [23], as well as fabricate yeastosomes
via templating of microbubbles with cells coated with cationic polyelectrolyte and the
layer-by-layer technique [24].

In our previous study, the impact of size and surface charge of polyester-based particles
on their biointeractions and intracellular uptake into different cell types was studied [19].
Luminescent PLA and PCL micro- and nanoparticles with different surface charges were
prepared to track the intracellular penetration of particles. For this, carboxylic groups on
the surface of particles were put into reaction with ε-aminogroups of poly(L-lysine) (PLys),
resulting in positively charged particles. The species obtained were then covered with
heparin (Hep) to prepare the particles bearing a negative surface charge. These particulate
formulations with variable hydrophobicity, sizes and charges are interesting candidates for
a comparative study of drug release kinetics.

Corticosteroids are extensively used medications in treating numerous inflammatory
diseases affecting the eye’s anterior segment, including conjunctivitis [25] and uveitis [26].
Previous reports revealed that corticosteroids’ incorporation into polyester micro- and
nanoparticles could effectively sustain the drug release and significantly advance its
transcorneal permeation compared to marketed forms [12,13]. Thus, corticosteroids, such
as prednisolone, could be considered as actual model drugs for the development of formu-
lations capable of prolonged drug release [27].

Although PLA and PCL particulate formulations are quite well studied, there is still
no clear understanding of their interaction within biological systems. Moreover, reliable
in vitro methods, which can be used to evaluate their in vivo toxicity, are in demand. The
generally accepted animal test for evaluating the eye toxicity of a formulation, namely,
Draize rabbit eye assay [28], usually causes pain and distress to the tested animals. Be-
sides the main ethical issues, animal testing has additional drawbacks, including manual
labor content, time-consuming protocols, and high costs. Therefore, alternatives to ani-
mal testing are required to overcome these drawbacks [29]. A 2-tier non-animal testing
strategy composed of the EpiOcularTM Eye Irritation Test (EpiOcularTM-EIT; OECD TG492)
and the Bovine Corneal Opacity and Permeability (BCOP; OECD TG437) assay has been
established [30] with improved relevance. However, only nanomaterials, such as metal,
amorphous, and carbon nanotubes, have been tested.

Herein, we loaded prednisolone to PLA and PCL micro- and nanoparticles. PLys
and Hep were acquired respectively for modification of the particle surface to form the
hydrophilic layers with a different charge and thickness [31]. We have shown that release of
the drug could be severely affected by the coating of the particles with polyelectrolyte layers.
We have also adopted and extended a human cell-based two-tier testing strategy for the
evaluation of polymeric micro- and nanocarriers. To the best of our knowledge, this is the
first systematic study that compares the impact of size and hydrophilicity/hydrophobicity
of the particles, and the surface charge of a series of polyester-based particles on drug-
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release kinetics and biological properties. Overall, our findings will be useful not solely
for ocular delivery, but also for a broad list of therapeutic applications of polyester-based
particulate formulations.

2. Materials and Methods
2.1. Materials

PLA (Mw = 6400) and PCL (Mw = 17,500) were synthesized by ring-opening polymer-
ization of corresponding monomers as previously described [14,19]. All reagents for parti-
cles preparation and modification: sodium hydroxide, 1-ethyl-3-(3-dimethylaminopropyl)
carbodiimide (EDC), N-hydroxysuccinimide (NHS), PLys (Mw = 15,000–30,000), Hep from
porcine intestinal mucosa and prednisolone, as well as all buffer salts, were purchased
from Fluka (Buchs, Switzerland) and Sigma (Darmstadt, Germany) and used without
additional purification.

2.2. Biological Material

The use of human cells was approved by the ethics committee (ethical approvals
EA1/081/13, EA1/345/14). Normal human keratinocytes (NHK) were isolated from
juvenile foreskin after the parents signed the informed consent. NHK was expanded in
a low calcium keratinocyte growth medium (KGM BulletKit, Lonza, Cologne, Germany).
Red blood cells (RBCs) were obtained from buffy-coat donations from anonymous healthy
volunteers (German Red Cross, DRK-Blutspendedienst Ost, Berlin, Germany).

Bovine eyes for assessment of irritation potential were obtained from freshly slaugh-
tered cattle (Teterower Fleisch, Teterow, Germany) after approval of the veterinary inspec-
tion office (DE 11 006 0007 21). EpiOcular™ kits (OCL-200) consisting of 24 tissues were
purchased and delivered by MatTek Corporation (Bratislava, Slovakia).

2.3. Methods
2.3.1. Particle Preparation

Single emulsion. PLA and PCL microparticles (MPs), loaded with a prednisolone,
were prepared by a modified single emulsion evaporation according to the previously
published protocol [14]. Shortly, 5 mg of drug and 100 mg of the corresponding polymer
were dissolved in 4 mL of chloroform and dispersed into 80 mL of an ice-cold water
phase via the simultaneous action of an ultrasound homogenizer and a magnetic stirrer
at 800 rpm. The water phase contained 0.5% [w/v] sodium dodecyl sulfate (SDS) and
1% [w/v] polyvinyl alcohol (PVA). Next, the chloroform was evaporated with a rotary
evaporator at 100 mbar for 2 h and then at 10 mbar for 1 h to form the particle suspension.
The particles were separated with a centrifuge at 10,000× g, washed three times with
distilled water, and freeze-dried.

Nanoprecipitation. PLA and PCL nanoparticles, loaded with prednisolone, were
obtained by nanoprecipitation according to a previously published protocol [31]. Shortly, a
solution of 100 mg of PLA or PCL and 5 mg of drugs in 20 mL of THF was slowly added to
100 mL of water. The mixture was stirred for one day in an opened flask to evaporate the
organic solvent. The obtained suspension was freeze-dried.

Modification of micro-and nanoparticles with PLys and Hep. Similar to the previously
published protocol, the micro- and nanoparticles were modified with PLys and Hep [19].
The scheme of particle step-by-step modification is presented in Figure 1.

Formation of MPs/NPs-PLys. The 50 mg of dry particles were resuspended in 0.5 mL
of 0.01 M NaOH and kept at room temperature for 20 min. Then, the suspension was
centrifuged for 5 min at 12,000× g and washed with distilled water. The washed particles
were resuspended in 0.5 mL of EDC 1 mg/mL solution in 0.1 M MES-buffer, pH 5.5. The
suspension was cooled down to 5 °C and mixed with 0.5 mL of NHS 1 mg/mL solution at
the same buffer. The reaction mixture obtained was kept at 5 ◦C for 1 h, then centrifuged
for 5 min at 12,000× g and resuspended in 1 mL of PLys 0.5 mg/mL solution in 0.01 M
borate buffer, pH 8.4. The suspension was stirred at 750 rpm and at room temperature for
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1 h. Next, the particles were separated via centrifugation as described above, washed twice
by distilled water, and freeze-dried.
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Formation of MPs/NPs-PLys-Hep. The surface of the species was further modified
with Hep to inverse their charge from a positive to a negative value as follows: 20 mg of
particles covered by PLys were resuspended in 0.5 mL of bidistilled water and mixed with
0.5 mL of 1 mg/mL Hep solution. The mixture was stirred at 750 rpm and room temperature
during 30 min, then washed by centrifugation as described above, and freeze-dried.

Formation of MPs/NPs-(PLys-Hep)2. To form the second interpolyelectrolyte layer
on the surface of particles covered with PLys-Hep layer, 20 mg of those were immersed
sequentially into PLys and Hep 1 mg/mL solutions in bidistilled water. The intermediate
MPs/NPs-PLys-Hep-PLys and final MPs/NPs-PLys-Hep-PLys-Hep = MPs/NPs-(PLys-
Hep)2 products were separated and washed by centrifugation as described above.

2.3.2. Evaluation of Particles Physicochemical Properties, Drug Entrapment Efficiency and
Release Kinetics

The particles’ mean hydrodynamic diameter and size distribution were determined by
dynamic light scattering (DLS), while mean ζ-potential was detected by electrophoretic light
scattering (ELS). The Zetasizer Nano ZS (Malvern, UK) was applied for these measurements.
The morphology of dry particles was studied by scanning electron microscopy (SEM) and
scanning-transmission electron microscopy (STEM) with application of scanning electron
microscopes Hitachi S-3400N and Hitachi SU8010 (Hitachi, Japan), correspondingly.

Entrapment efficiency and model drug release evaluation. Dry particles were weighted
(Wparticles) and dissolved in DMSO to evaluate the entrapped drug quantity (Qentrap) via
spectrophotometric detection. The drug loading (DL, µg of drug per mg of particles) and
encapsulation efficiency (EE, %) were calculated as follows:

DL(µg/mg) = Qentrap/Wparticles (1)

EE(%) = DL/DL0 × 100 (2)
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The DL0 is the theoretical quantity of entrapped drug:

DL0(µg/mg) = C0 × V0/Wparticles (3)

where C0 is the initial concentration of the drug solution and V0 is the volume of this
solution taken for entrapment.

The release was performed in 0.01 M phosphate-buffered saline (PBS), pH 7.4, contain-
ing 0.1% of SDS. The cumulative dye release (%) was evaluated as the total quantity of drug
detected in the supernatant at time t referred to the amount of initially entrapped drug.

DDSolver, a free software program, was applied for approximating the kinetic patterns
of the initial and modified polyester particles with the application of zero-order, first-order,
Higuchi, Hixson-Crowell, Baker-Lonsdale, Hopfenberg, Korsmeyer–Peppas, Peppas-Sahlin
and Weibull models to elucidate the release mechanism of the encapsulated drug [32].

To evaluate and compare the effect of polyester modification with polyelectrolyte
layers on the surface hydrophobicity, the contact angles of corresponding films (PLA,
PCL, PLA-PLys, PCL-PLys, PLA-PLys-Hep, PCL-PLys-Hep, PLA-(PLys-Hep)2, PCL-(PLys-
Hep)2) were measured. The films were prepared and characterized as described before [33].
Briefly, a 1.5 µL water drop was placed on the film surface, and the average static contact
angle was determined using the drop analysis plugin (Biomedical Imaging Group, Lau-
sanne, Switzerland) for ImageJ software during the first 30 s following the drop deposition.
For each sample, ten measurements were done on different areas of the film. Three samples
were characterized for each film composition.

2.4. Cytotoxicity
The cytotoxicity of the particles towards epithelial cells was determined by a 3-(4,5-

dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction assay. In brief,
NHK was seeded into 96-well plates, and (co)polymer nanoparticles were added at 0.05%
and 0.005% [w/v] in KGM for 48 h; 100 µL MTT solution (5 mg/mL in PBS) was added
after the incubation period for 4 h. The absorbance was measured at 540 nm (FLUOstar
Optima, BMG Labtech, Offenburg, Germany). All experiments were performed in triplicate.
For toxicity assessment, KGM was used as a reference for untreated cells; the addition of
0.005% [w/v] sodium dodecyl sulfate served as a positive control, 10% [v/v] distilled water
as a solvent control. The data are presented as relative viability. The mean value of solvent
control (corrected for blank value) was set to 100%. Cell viability below 75% indicates
cytotoxic effects [34].

Viability (%) = corrected testing nanocarrier OD540/corrected solvent control OD540 × 100 (4)

2.5. Irritation Potential

A red blood cell (RBC) test was performed according to INVITTOX N◦37 protocol [35].
RBC diluted with 10 mM glucose (Sigma-Aldrich) to 4 × 109 cells/mL was added to
nanoparticles in PBS. Deionized water served as a positive control, PBS as a negative control,
and SDS solutions ranging in concentrations from 0 to 80 ppm as a hemolysis reference.
The absorbance of the released oxyhemoglobin at 560 nm (WPA Biowave, Biochrom,
Berlin, Germany) was measured, and the relation between the effective concentration
of 50% hemolysis and protein denaturation was calculated to evaluate the acute eye
irritancy potential.

A bovine corneal opacity and permeability (BCOP) test was performed according to
OECD guideline no. 437 [36]. Briefly, the cornea of bovine eyes was isolated and washed in
Hanks’ Balanced Salt Solution (HBSS with Ca2+ and Mg2+) mounted in the cornea holders
with Minimum Essential Medium (MEM, without Phenol Red; both from Gibco by Life
TechnologiesTM, Carlsbad, CA, USA) and measured for initial opacity after 1 h (Opac-
itometer Kit, BASF-OP 3.0, Ludwigshafen, Germany). Nanoparticles 0.05% [w/v] were
added for a period of 10 min, and the final opacity was measured after 4 h. Permeability
was determined by adding sodium Fluorescein solution (4 mg/mL, Sigma-Aldrich). Spec-
trophotometric measurements (WPA Biowave, Biochrom, Cambridge, UK) evaluated at
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490 nm were recorded as optical density (OD490). De-ionized water was used as a negative
control, and 100% [v/v] ethanol (VWR, Darmstadt, Germany) as a positive control. The
final in vitro irritancy score (IVIS) was calculated with the equation

IVIS = mean opacity value + (15 × mean permeability OD490 value) (5)

EpiOcular™ Eye Irritation Test (OCL-200-EIT), a reconstructed human cornea-like
epithelium (RhCE) test method, was conducted according to OECD guideline 492 [37].
The EpiOcular™ human cell construct used in the assay was purchased from MatTek
Corporation (Bratislava, Slovakia). First, test materials were applied topically to the model,
and the irritation potentials of the test materials were evaluated by the relative viability of
the treated tissues relative to the negative control-treated tissues, which were determined
by the NAD(P)H-dependent microsomal enzyme reduction of MTT (Equation (4)). The
data are presented as relative viability. When meeting all the acceptance criteria, the final
tissue viability above 60% relative to negative control-treated tissue viability is labeled as
non-irritant, and below 60% is labeled as an irritant.

2.6. Statistical Analysis

The data are depicted as mean ± SEM. Statistical significance of differences was
determined by a one-sample t test or one-way analysis of variance (ANOVA) followed by a
Bonferroni post-hoc analysis and was considered significant at p ≤ 0.05. Statistical analysis
was performed using GraphPad Prism 5.0 (GraphPad software, La Jolla, CA, USA).

3. Results and Discussion
3.1. Formation of Particles with Different Sizes

Nanoprecipitation and single emulsion approaches were applied to obtain PLA-
and PCL-based nanoparticles (NPs) and microparticles (MPs), correspondingly [19,31].
The particles obtained showed different hydrodynamic sizes, ζ-potentials, encapsulation
efficiencies, and particles distributions (Table 1).

Table 1. Characteristics of PLA- and PCL-based particles. PLA = poly(L-lactic acid), PCL = poly(ε-caprolactone), MPs = mi-
croparticles, NPs = and nanoparticles.

Polymer
Type

Particles
Type

dH
DLS,

(nm)
PDI ζ-potential,

(mV)

Entrapment
Efficiency,

(%)

DL,
(µg/mg of
Particles)

Films Contact
Angle,

(◦)

PLA

MPs 678 ± 46 0.10 −40 ± 2 9 14
68.6 ± 0.8NPs 178 ± 10 0.06 −42 ± 1 93 86

MPs/PLys 720 ± 100 0.14 46 ± 4 6 9
55.9 ± 0.6NPs/PLys 210 ± 90 0.43 32 ± 7 76 91.45

MPs/PLys/Hep 820 ± 130 0.16 −35 ± 4 8 7
45.3 ± 0.5NPs/PLys/Hep 290 ± 40 0.14 −15 ± 8 59 41

MPs/(PLys/Hep)2 908 ± 170 0.19 −28 ± 4 8 7
38.3 ± 2.2NPs/(PLys/Hep)2 303 ± 75 0.25 −12 ± 2 59 40

PCL

MPs 990 ± 98 0.11 −22 ± 1 16 17
83.9 ± 0.9NPs 188 ± 12 −27 ± 1 95 102

MPs/PLys 1070 ± 20 0.02 39 ± 4 17 21
58.1 ± 0.7NPs/PLys 230 ± 80 0.35 30 ± 2 83 114

MPs/PLys/Hep 1084 ± 70 0.07 −30 ± 5 10 15
47.8 ± 0.5NPs/PLys/Hep 280 ± 40 0.14 −22 ± 3 42 42

MPs/(PLys/Hep)2 1192 ± 114 0.10 −21 ± 5 9 13
41.2 ± 1.2NPs/(PLys/Hep)2 337 ± 108 0.32 −18 ± 3 40 39
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The single emulsion method [14,38] is based on dispersing the polymer solution in
hydrophobic solvent in excess of the water phase containing surfactants to prevent the
fast coalescence of oil drops. The evaporation of organic solvent leads to the formation of
polymer particle suspension. The model drug—prednisolone—was added to the polymer
solution before the emulsification. To minimize polymer phase separation upon its contact
with water and to obtain the fine particles, the SDS/PVA stabilizing mixture was applied
for particle formation [14].

To formulate the particles of a smaller size, the procedure of the nanoprecipitation
method was used. In this case, THF, a water-miscible solvent, was employed as an organic
phase for the ability to solubilize both the polymers and the drugs. Good water miscibility
of THF allows fast dispersion of the polymer due to rapid diffusion of THF into the
water. Applying appropriate water/THF ratios [31] allows the formation of fine polymer
dispersion in water. Overall, the preparation methods reported here appeared to be suitable
for the formulation of prednisolone-loaded MPs and NPs based on both PLA and PCL.

Particles obtained by the emulsion approach possess a greater size than those pre-
pared via nanoprecipitation and labeled as microparticles (MPs) and nanoparticles (NPs),
respectively (Table 1, Figure 2). Remarkably, the data on the particles’ size and size dis-
tribution showed a clear dependence on polymer hydrophobicity that was in complete
agreement with our previous results [14]. ζ-potential of both PLA and PCL MPs, and NPs
is negative, which is due to the presence of carboxylic groups on their surface. The contact
angles of corresponding polyester-based films (Table 1) indicate a greater hydrophobicity
of PCL-based materials as compared to PLA-based materials. However, both types of
material possess contact angle less than 90◦, so they could be classified as hydrophilic ones.

Pharmaceutics 2021, 13, x  7 of 17 
 

 

NPs/PLys/Hep 290 ± 40 0.14 −15 ± 8 59 41 

MPs/(PLys/Hep)2 908 ± 170 0.19 −28 ± 4 8 7 
38.3 ± 2.2 

NPs/(PLys/Hep)2 303 ± 75 0.25 −12 ± 2 59 40 

PCL 

MPs 990 ± 98 0.11 −22 ± 1 16 17 
83.9 ± 0.9 

NPs 188 ± 12  −27 ± 1 95 102 

MPs/PLys 1070 ± 20 0.02 39 ± 4 17 21 
58.1 ± 0.7 

NPs/PLys 230 ± 80 0.35 30 ± 2 83 114 

MPs/PLys/Hep 1084 ± 70 0.07 −30 ± 5 10 15 
47.8 ± 0.5 

NPs/PLys/Hep 280 ± 40 0.14 −22 ± 3 42 42 

MPs/(PLys/Hep)2 1192 ± 114 0.10 −21 ± 5 9 13 
41.2 ± 1.2 

NPs/(PLys/Hep)2 337 ± 108 0.32 −18 ± 3 40 39 

The single emulsion method [14,38] is based on dispersing the polymer solution in 
hydrophobic solvent in excess of the water phase containing surfactants to prevent the 
fast coalescence of oil drops. The evaporation of organic solvent leads to the formation of 
polymer particle suspension. The model drug—prednisolone—was added to the polymer 
solution before the emulsification. To minimize polymer phase separation upon its contact 
with water and to obtain the fine particles, the SDS/PVA stabilizing mixture was applied 
for particle formation [14]. 

To formulate the particles of a smaller size, the procedure of the nanoprecipitation 
method was used. In this case, THF, a water-miscible solvent, was employed as an organic 
phase for the ability to solubilize both the polymers and the drugs. Good water miscibility 
of THF allows fast dispersion of the polymer due to rapid diffusion of THF into the water. 
Applying appropriate water/THF ratios [31] allows the formation of fine polymer disper-
sion in water. Overall, the preparation methods reported here appeared to be suitable for 
the formulation of prednisolone-loaded MPs and NPs based on both PLA and PCL. 

Particles obtained by the emulsion approach possess a greater size than those pre-
pared via nanoprecipitation and labeled as microparticles (MPs) and nanoparticles (NPs), 
respectively (Table 1, Figure 2). Remarkably, the data on the particles’ size and size distri-
bution showed a clear dependence on polymer hydrophobicity that was in complete 
agreement with our previous results [14]. ζ-potential of both PLA and PCL MPs, and NPs 
is negative, which is due to the presence of carboxylic groups on their surface. The contact 
angles of corresponding polyester-based films (Table 1) indicate a greater hydrophobicity 
of PCL-based materials as compared to PLA-based materials. However, both types of ma-
terial possess contact angle less than 90°, so they could be classified as hydrophilic ones. 

 
Figure 2. SEM and STEM (for PLA NPs) images of particles prepared via emulsion evaporation and nanoprecipitation 
techniques. PLA = poly(L-lactic acid), PCL = poly(ε-caprolactone), MPs = microparticles, NPs = and nanoparticles. 
Figure 2. SEM and STEM (for PLA NPs) images of particles prepared via emulsion evaporation and nanoprecipitation
techniques. PLA = poly(L-lactic acid), PCL = poly(ε-caprolactone), MPs = microparticles, NPs = and nanoparticles.

The relevant differences in entrapment efficiency were observed for microparticle
formulations. The highest entrapment efficiency (EE) was observed for more hydrophobic
PCL, while the EE was relatively low in the case of PLA with lower hydrophobicity
(Table 1). It was observed that the increase in polymer hydrophobicity led to a more
significant entrapment efficiency of a model drug. Similar observations were reported
earlier [29]. In the published study, the effect of polymer hydrophobicity on a model
hydrophobic drug, namely, risperidone loading and release from microparticles formulated
on the base of PLA and PCL polymers, was presented. Our results come in accordance with
this study. Overall, the EE of NPs exceed those of MPs. This might be caused by a sharper
polymer phase separation in nanoprecipitation compared to the emulsion-based approach.
The latter approach can be characterized by the presence of oil drops in water medium, so
some drug can leak out from the particle-forming organic phase to the dispersing aqueous
phase. In the case of nanoprecipitation, rapid phase separation leads to immediate particle
suspension formation, leading to the entrapment of a higher amount of the drug.

3.2. Formation of Particles with a Tunable Surface Charge

It is well known that increasing particle charges decrease their aggregation due to
electrostatic repulsion [39]. Moreover, the particle charge is also crucial for their biological
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properties [19,38]. In the current study, two biodegradable polyelectrolytes, namely, PLys
and Hep, were applied to alter the surface charge of the particles (Figure 2). In our previous
study, the covalent/electrostatic attachment of PLys/Hep, respectively, onto the particles
surface, was performed to hydrophilize the surface and to study their impact on particles’
biodistributions and intracellular uptake into different cell types [19].

In the current study, we were aimed to prepare the particles with different hydrophilic-
ity and charged layers on the surface to investigate their effect on drug release. The
attachment of PLys changes all particles’ surface charge to remarkably positive values as
compared to the initial particles (Figure 1, Table 1). Additional electrostatic attachment of
Hep leads to the formation of a negatively charged surface (Figure S1 in Supplementary
Materials). This proves the successful attachment of the charged molecules to particle
surfaces. The high absolute values of ζ-potential result in increased cationic and anionic
charge density on the surface of modified particles. Moreover, it was shown that interpoly-
electrolyte layer thickness could be controlled by sequential covering of negatively charged
particles with polycation and then by polyanion again. It is notable that charge inversion
was performed by rapid addition of macromolecules with the opposite charge. Thus, the
aggregation of particles at a zero charge point was escaped.

The formation of polyelectrolyte layers on the particle surface has led to the increase
of the particle hydrodynamic diameter (Table 1). At the same time, the particle distribu-
tion was not growing drastically and the particles remain quite stable. All non-modified
and modified polyester-based particles showed a unimodal and quite a narrow size dis-
tribution, revealing their stability and uniformity (Figures S2 and S3 in Supplementary
Materials). Only PCL NPs modified by PLys and Hep showed some aggregation, possibly
due to corona-forming macromolecules interweaving during purification and lyophiliza-
tion. It should be noted here that all types of particles possess a good ability to redisperse
after lyophilization.

The contact angle of model polyester-based films decrease upon modification with
PLys-Hep interpolyelectrolyte layers, indicating more hydrophilic properties of the surface.
Thus, it could be assumed that attachment of polyelectrolyte corona increases the positive
interaction with water.

The EE of prednisolone for MPs and NPs modified with PLys and Hep were lower
than that for initial particles (Table 1). This fact could be explained by the effect of a particle
modification process. Such a process involves partial hydrolysis of particle surface in the
presence of sodium hydroxide and covalent attachment of PLys. These stages directly
affect the surface layer of the particles and involve many centrifugation steps, so some
drug leakage from the particles’ surface seems to be very probable.

3.3. Release Kinetics of Prednisolone

The objective of this study was to elucidate the effect of surface properties of polyesters-
based micro- and nanoparticles with different hydrophobicities on the release kinetics of the
encapsulated model drug prednisolone. This corticosteroid was selected as a model drug
for future studies because it was extensively used in treatments of numerous inflammatory
eye diseases [4,26,40], either in the form of eye drops or ointment. The in vitro prednisolone
release profiles during 720 h (Figure 3A,C) and 6 h (Figure 3B,D) clearly show the effect
of both MPs and NP surface modification on the drug dissolution kinetics. One can
observe the more rapid release from NPs as compared to MPs. This could be explained
by the greater specific surface area of NPs, which allows the more rapid drug dissolution.
Moreover, fast release from NPs is favored by a lesser polyester thickness, through which
the diffusion of the drug occurs, and greater drug concentration in the particles (drug
loading, see Table 1).

The prednisolone release from modified particles visibly differs from that observed
for initial particles. Moreover, the increase in polyelectrolyte layer thickness on the surface
of polyester-based particles diminishes the rate of release. It is also interesting that non-
modified PLA/PCL-based MPs and NPs possess an initial “burst” drug release stage. More
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than 50% of prednisolone rapidly dissolves at this stage during first 2–3 h (Figure 3B,C).
Introduction of PLys- and Hep-based polyelectrolyte layers on the surface of the particles
minimize such a “burst” release stage (Figure 3). Notably, the particles covered by two
layers of polyelectrolytes, (PLys-Hep)2, show even a release profile, without an initial
“burst”. This could be referred to the action of two factors, namely, a decrease in the drug
loading due to leakage of the drug during modification and formation of the hydrophilic
layer on the particle surface. This layer could serve as an additional barrier for drug
diffusion, which helps to prolong the drug release (Figure 4).
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Interestingly, prednisolone release was faster from modified NPs as compared to
modified MPs. This should be generally related to a greater specific surface area of the
particles with a smaller diameter, but also could be provoked by a faster degradation of NPs
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promoted by surface hydrophilization and swelling of the corona layer. However, the effect
of polyelectrolyte surface layers on degradation should be studied in future experiments.

Generally, the obtained prednisolone formulations based on modified PLA/PCL MPs
and NPs allowed a sustained release of the encapsulated drug for more than 30 days.
Previous studies by Budhian et al. [41] showed that in vitro haloperidol release from
PLGA/PLA particles is affected by particle size and coating. The authors showed a slower
release for particles with a greater hydrophobicity and elevated particle size. It was also
demonstrated that chitosan-coated particles considerably reduce the initial “burst” stage.
In a similar study, the reduction in the initial “burst” stage of lidocaine release from PLGA
microspheres by coating them with chitosan was reported [42]. In the mentioned studies,
the coating of particles with hydrophilic corona was performed only via electrostatic
interactions between the coating polymer and polyester. Neither was covalent attachment
of polyelectrolyte, nor variation of polyelectrolyte layer thickness, performed in these
studies. Notably, our results come in accordance with previous findings irrespective of
the nature of coating layers on the surface of particles and the method of biopolymer
attachment. However, in our work, the higher charge density, covalent attachment of PLys
to the particle surface and the possibility to form several polyelectrolyte layers allowed us
to achieve better control over the drug release.

In order to analyze and compare the mechanisms of drug release from non-modified
and modified PLA- and PCL-based MPs and NPs, the resulting drug release profiles were
approximated with the application of a number of kinetic mathematical models (Table 2,
for full data see Supplementary Materials Tables S1–S4).

The first observation within the results presented in Table 2 was that diffusion-
controlled zero-order release kinetics is not possible in the case of non-modified particles,
as well as in the case of particles with one polyelectrolyte layer. The good fitting with this
model was achieved for MPs with two PLys-Hep layers. Thus, it could be concluded that
such formulations can release drugs within the first six hours according to the zero-order
kinetic law. However, on the long scale (see Tables S1–S4), the release becomes dependent
on the concentration of drugs in the particles and the first-order release model works better.
One can also observe the decrease in both K0 and K1 in the case of modified particles. The
constant values decrease with the increase in polyelectrolyte layer thickness, indicating the
role of surface hydrogel corona in the reduction of the drug dissolution rate.

Approximation of release data with Higuchi, Hixson-Crowell, Baker-Lonsdale and
Hopfenberg models allows the conclusion that best fitting is observed in the case of Baker-
Lonsdale and Higuchi models, while the Hixson-Crowell and Hopfenberg models are
less applicable (Table 2). Thus, it could be concluded that the dominating mechanism of
prednisolone release is diffusion, but not drug dissolution or polyester degradation. In
addition, it is quite noticeable that applied models are a better fit release from non-modified
particles and particles with double PLys-Hep corona, but not from intermediate particulate
formulations. Thus, these particles could be considered as two extreme cases.

Application of parametric models, such as Korsmeyer–Peppas, Peppas–Sahlin and
Weibull, allows the best fitting of the obtained experimental data (Table 2). The determined
coefficients are very close to 1.0. Thus, the calculated parameters could be considered as
confident. The values of the n parameter from the Korsmeyer–Peppas model confirms that
the main mechanism of drug release is Fickian diffusion. Only in the case of PLA MPs-
(PLys-Hep)2 is the n value above 0.7, revealing the anomalous diffusion, when diffusion
and polymer relaxation are both important factors. The Peppas–Sahlin model shows
the ratio of diffusion (K1) and relaxation of polymer molecules (K2) as factors of drug
release. The diffusion is always more important for non-modified particulate formulations
(K1 > K2). However, the modification of particle surface increases the role of relaxation for
PCL and PLA MPs-(PLys-Hep)2 K1 = K2. The possible explanation for this result is that the
relaxation of polyelectrolytes within surface hydrogel corona becomes an important factor
affecting the release of prednisolone.
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Table 2. Correlation coefficients and constants evaluated by fitting prednisolone release profiles during first six hours of release. The models used for drug release fitting, full
curves fitting data and linearization curves are presented in Supplementary Materials (Tables S1–S4). PLA = poly(L-lactic acid), PCL = poly(ε-caprolactone), MPs = microparticles,
NPs = and nanoparticles.

Model Para-meter MPs MPs-PLys MPs-PLys-Hep MPs-(PLys-Hep)2 NPs NPs-PLys NPs-PLys-Hep NPs-(PLys-Hep)2

PLA

Zero-order
R2 0.8707 0.7769 0.7786 0.9839 0.8801 0.8552 0.8222 0.9414

K0 11.6 6.2 5.2 1.8 14.1 8.4 7.2 2.8

First-order
R2 0.9396 0.8114 0.8063 0.9867 0.9662 0.8981 0.8618 0.9494

K1 0.19 0.08 0.06 0.02 0.28 0.12 0.10 0.03

Higuchi R2 0.9774 0.9360 0.9375 0.9816 0.9738 0.9758 0.9598 0.9985

Hixson-Crowell R2 0.9468 0.7999 0.7970 0.9858 0.9468 0.8843 0.8487 0.9468

Baker-Lonsdale R2 0.9866 0.9455 0.9450 0.9815 0.9819 0.9839 0.9687 0.9987

Hopfenberg R2 0.9396 0.8114 0.8063 0.9867 0.9659 0.8980 0.8617 0.9493

Korsmeyer-Peppas
R2 0.9869 0.9973 0.9892 0.9835 0.9775 0.9973 0.9940 0.9985

n 0.40 0.23 0.24 0.73 0.44 0.33 0.29 0.50

Peppas-Sahlin
R2 0.9996 0.9993 0.9999 0.9994 0.9970 0.9998 0.9981 0.9998

K1 32.2 23.7 19.8 6.1 35.2 26.4 24.7 6.3

K2 4.8 5.0 4.2 8.7 4.6 4.3 4.6 0.6

Weibull

R2 0.9950 0.9984 0.9997 0.9992 0.9956 0.9991 0.9961 0.9997

α 2.5 4.5 5.3 29.9 1.9 3.6 4.0 5.3

β 0.4 0.2 0.2 0.6 0.4 0.3 0.3 0.2

PCL

Zero-order
R2 0.8707 0.7769 0.7786 0.9839 0.8801 0.8552 0.8222 0.9414

K0 11.6 6.2 5.2 1.8 14.1 8.4 7.2 2.8

First-order
R2 0.9336 0.9731 0.9346 0.9897 0.9726 0.9801 0.9378 0.9409

K1 0.17 0.05 0.03 7 × 10−3 0.19 0.06 0.04 0.01

Higuchi R2 0.9690 0.9844 0.9867 0.9731 0.9918 0.9904 0.9898 0.9913
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Table 2. Cont.

Model Para-meter MPs MPs-PLys MPs-PLys-Hep MPs-(PLys-Hep)2 NPs NPs-PLys NPs-PLys-Hep NPs-(PLys-Hep)2

Hixson-Crowell R2 0.9176 0.9696 0.9315 0.9896 0.9600 0.9765 0.9339 0.9397

Baker-Lonsdale R2 0.9742 0.9830 0.9871 0.9751 0.9927 0.9884 0.9904 0.9918

Hopfenberg R2 0.9335 0.9731 0.9346 0.9897 0.9726 0.9801 0.9378 0.9897

Korsmeyer-Peppas
R2 0.9716 0.9907 0.9866 0.9973 0.9919 0.9961 0.9898 0.9914

n 0.44 0.65 0.51 0.42 0.49 0.64 0.51 0.53

Peppas-Sahlin
R2 0.9844 0.9979 0.9960 0.9967 0.9976 0.9998 0.9992 0.9999

K1 27.1 53.5 6.0 0.8 26.8 33.2 7.6 2.4

K2 3.6 60.6 0.7 0.9 3.1 48.8 0.9 0.3

Weibull

R2 0.9991 0.9972 0.9896 0.9938 0.9999 0.9999 0.9985 0.9976

α 2.5 10.1 14.4 105.8 2.7 8.3 10.5 33.8

β 0.3 0.6 0.5 0.8 0.5 0.6 0.4 0.4
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The Wibull model contains two parameters, α (time scale factor) and β (release curve
factor). The first factor increases upon modification of the surface, revealing a more
prolonged release. The second parameter is always below 1.0, which is characteristic for
parabolic release curve [43].

Thus, the performed study of prednisolone release from polyester particles modified
by PLys and Hep interpolyelectrolyte hydrogel corona allows the conclusion that the
release is affected by particle size and surface modification. The smaller the size of the
particles, the greater the release rate that could be expected. As the main mechanism of
drug release during the first month is diffusion, the surface hydrogel layer will definitely
affect the release rate, making it more sustained.

Here we should note that in current studies we have performed the release studies
in enzyme-free medium to compare the release kinetics in similar conditions. The pres-
ence of specific enzymes within the tissues will affect the fate of such particles and drug
release kinetics.

3.4. Effect of Particles Surface Modification on Their Cytotoxicity

All particles were incubated with human NHK cells at the concentrations of 0.005
and 0.05% for 24 h and showed a concentration-dependent cytotoxic effect where a higher
concentration led to more cytotoxic effects (Figure 5). Most of the modified particles,
regardless of PLys or Hep, showed no cytotoxic effects at lower concentrations, which
indicates the good biocompatibility of the particles, although PLA/polylysine nanoparticles
exhibiting surface charges showed a cytotoxic effect. This may be caused by the fact that
the cell surface is negatively charged, and the polylysine-modified cationic nanoparticles
readily penetrated through the cell membrane [44,45], which may lead to the cytotoxic
effect. All modified particles presented more cytotoxic effects than PLA or PCL particles
alone, which may be due to the fact that the amphiphilic modification conjugates could
better diffuse through the bilayered lipid membranes [46]. Except for the PLA-MPs and
PCL-NPs, where similar viabilities were detected, all other microparticles presented better
biocompatibility than nanoparticles. This could be due to the smaller size, which could
enhance the internalization by the endocytic mechanism and induce cytotoxicity upon
uptake [47].
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Figure 5. Effect of polyester particles on cell viability. NHK were exposed to the indicated concen-
trations for 24 h. A declined formazan formation <75% after MTT exposure indicates cytotoxicity. 
Data are presented as mean ± SD, n = 3. 

Figure 5. Effect of polyester particles on cell viability. NHK were exposed to the indicated concentra-
tions for 24 h. A declined formazan formation <75% after MTT exposure indicates cytotoxicity. Data
are presented as mean ± SD, n = 3.

Furthermore, as the stimulation period for cytotoxicity study is 24 h and for irritation
studies only 10 or 30 min, the cumulative releases of the model drug was negligible
(Figure 3).



Pharmaceutics 2021, 13, 801 14 of 18

3.5. Modified Particles Irritation Potential

The RBC test, as a general irritancy potential test, was performed and evaluated on
the basis of the hemoglobin leakage followed by the disruption of the cell membranes.
Under the standardized exposure time of 10 min, all samples showed negligible hemolysis,
with the highest hemolysis value at around 4% by PLA MPs (Figure 6), far below the
irritancy effect rate, which indicates the good tolerability of the polyester particles on a cell
monolayer level.
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Figure 6. Eye irritation potential of polyester particles at the concentration of 0.5% by BCOP assay. 
Mean ± SD, n = 3. 

The RBC test, which is rapid and inexpensive, is normally used for predicting the eye 
irritancy of surfactants [48]. However, toxicity evaluations should be confirmed on a tis-
sue analysis level, preferably on the skin or cornea tissues instead of only on isolated cells, 
as the interested drug delivery system would be used for topical applications. The BCOP 
assay and EpiOcular™ test, both validated alternative test systems, were combined in the 
aim of replacing the original reference method, in vivo Draize eye irritation test, to predict 
the eye irritation potential. 
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The RBC test, which is rapid and inexpensive, is normally used for predicting the eye
irritancy of surfactants [48]. However, toxicity evaluations should be confirmed on a tissue
analysis level, preferably on the skin or cornea tissues instead of only on isolated cells, as
the interested drug delivery system would be used for topical applications. The BCOP
assay and EpiOcular™ test, both validated alternative test systems, were combined in the
aim of replacing the original reference method, in vivo Draize eye irritation test, to predict
the eye irritation potential.

According to the OECD guidelines 437 and 492, both the BCOP assay and the EpiOcu-
lar™ test were the required methods of the chemical legislation. However, the publications
or legislations regarding the nanomaterials were almost absent. The Draize test is tra-
ditionally applied on live rabbits, and the accuracy is relatively low, despite the raised
animal ethical issues. Thus, a more accurate and alternative evaluation system seems to be
of prompt demands. The BCOP assay could distinguish the identification of substances
from “No Category” and “Category 1”, and an EpiOcular test could be distinguished from
“No Category” and “Category 1 or 2”. A combination of these two tests could provide an
evaluation strategy that covers the full spectrum of eye irritation potentials. The two-tiered
system has been established and tested for 23 metallic nanoparticles and carbon nanotubes,
so we have adopted this strategy and extended its use onto polyester particles.

As a more toxic effect was shown at the higher concentration in the previous tests
on cells, both assays were performed with all samples at the concentration of 0.5%. The
BCOP assay was first performed due to its simplicity and inexpensiveness, and an in vitro
irritation score (IVIS) was calculated to classify the test substance into “No Category” (≤3),
“No prediction can be made” (>3; ≤55) and “Category 1”, inducing serious eye damage
(>55), as defined by the United Nations Globally Harmonized System of Classification
and Labelling of Chemicals (UN GHS). As shown in Figure 7, distilled water and methyl
acetate were applied as negative and positive controls, and titanium dioxide nanomaterials
as a nanoparticulate reference. PLA MPs-PLys, PCL MPs-PLys, PCL MPs-PLys-Hep and
TiO2 were categorized as “no prediction can be made”, while all other particles fell into
the “no category”, suggesting no eye irritation potential. Subsequently, the EpiOcular
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test was performed to distinguish substances when no prediction can be made. The final
evaluating criteria for the EpiOcular test is tissue viability, where above 60.0% is relative to
the negative control non-irritant and below 60.0% is an irritant. All the particles presented
a tissue viability above 60%, indicating that no irritancy can be predicted, although TiO2
nanoparticles showed a broader line irritancy [30]. Combining the results from both assays,
all polyester particles were predicted to not be an eye-irritant, which is in accordance with
the RBC test result.
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4. Conclusions

Polyester-based micro- and nanoparticles were successfully prepared and character-
ized as carriers for the prednisolone model drug. The formulated particles were modified
with biodegradable polyelectrolytes to tune the surface charge. The formed polyelectrolyte-
based hydrogel corona affected the release kinetics of the prednisolone drug. The release
of the drug from modified polyester particles was shown to proceed for more than 30 days.
The possibility to control the release rate by adjusting the coating layer was shown. Based
on the comparison of model approximations, the prednisolone release process was mainly
governed by molecular diffusion as the principal mechanism. The developed particle
formulations were found to be nontoxic in the tested range of concentrations. A two-tier
strategy with the EpiOcularTM Eye Irritation Test, as well as Bovine Corneal Opacity and
the Permeability Assay, was adopted for an eye irritancy evaluation. We found no eye-
irritant potential for any polyester carriers in this study. Hence, the family of polyester
micro- and nanocarriers, with varied size, surface charge and hydrophilicity, is a good
indicator to gain insights into the influential factors on particulate functionality and risk,
and loaded with a prednisolone model drug (something understandable) it is promising
for further investigation as a biocompatible ocular drug delivery carrier.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/pharmaceutics13060801/s1, Figure S1. ζ-potential diagrams obtained by ELS (Zetasizer
Nano ZS, Malvern) for non-modified and modified PLA NPs; Figure S2. Size distribution diagrams
obtained by DLS (Zetasizer Nano ZS, Malvern) for non-modified and modified PLA MPs and NPs;
Figure S3. Size distribution diagrams obtained by DLS (Zetasizer Nano ZS, Malvern) for non-
modified and modified PCL MPs and NPs; Table S1. Correlation coefficients and constants evaluated
by fitting prednisolone release from PLA MPS; Table S2. Correlation coefficients and constants
evaluated by fitting prednisolone release from PLA NPS; Table S3. Correlation coefficients and
constants evaluated by fitting prednisolone release from PCL MPS; Table S4. Correlation coefficients
and constants evaluated by fitting prednisolone release from PCL NPS.
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